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Data

Black box predictor

How deep nets Simulations
hEIP CSE Black box model replicator

- Model reduction

- Solve PDE with NN

- Regress the PDE

- Physics-informed NN

- Subgrid closure models, etc.



Data

Black box predictor

What can a deep Simulations
net rea”y knOW? Black box model replicator

- Disentangle explanatory
components
- Generate unseen data

(redatum)



>>> WHAT: Estimate Similarity or Coherency Among Instances

| digit 3

Instances
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3; digit information is similar
in all images

— Dissimilar (Nuisance; W)
#; writing style and
orientation are dissimilar
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Fig. 1: In the MNIST experiment, the SIMO system responds to the input digit information (here, 6 and 9) by
producing multiple dissimilar hand-written images as channel outputs. Here, six channel outputs are plotted.
The first three channels didn’t respond to 9, however SymAE produces their virtual outputs (dashed lines) that
have identical writing style as in the true outputs. Similarly, virtual channel outputs of the last three channels

are also plotted.



>>> WHAT: Estimate Similare:ty or Coherency Among Instances

o , Earth Model

— Coherent ()

5’9“‘ k\\\\
medium effects are similar in

B

all passive shot gathers

— Dissimilar (Nuisance; W)
source mechanism, signature
and position are dissimilar
among instances
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>>> WHY: Redatum To Produce Virtual Gathers!
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Why does this
work?

There is an underlying model of
the form

Xij = Flai, by)

Symmetry under permutations
“Latent rank-1”

The network’s explanation is
_ (a) _(b)
Xij=06(z ",2;")

-> Matrix recovery question



How does this work?

>>> HOW: SymAE’s Network Architecture
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Regularization with G

Inverse problem

y = AX)
Require x € Ran(G) for some deep generator G. Then

AN N

X =G(2)

where

AN

(2,G) = argmin_glly — A(G(2))ll2
Measure of complexity:
1. z = (2@, 2)) ¢ ROM1+n2): 3nd
2. G dense ReLu width w and depth d.



Regularization and recovery in Ran(G)

Matrix to complete/recover:

14,1 ... I(1,m)
XO — . = RnldxXngdy
I(ny,1) ... I(ni,ng)

+ Measurements: [(z,j) for (i,7) € €2, so y = A(Xy), where A is binary mask
onto m blocks of size d, x d, indexed by (2

+ ldealized measurements: y = A(Xj), where A is Gaussian iid with m rows.



Regularization with G

Recovery: Among all X € Ran(G) for some G, with zero training error
(A(X) = A(Xp)), do we have X = X7

Complexity of G: let X = product of all squared spectral norms of weights of
decoder

Theorem [D., Geshkovski '23]

m 2> (ny +ny)%*  and logarithmic terms

and A(Xy) = A(X), then we have perfect recovery w.h.p.: X = X,.

See also Bora et al, 2017 (fixed G)



Proof ingredients

Niceness of neural nets: X € G and Xy, € G = X — X € G’ (larger)
Lower bound of “smallest singular value on a subset”:
inf | A(Z)|| >0
Z€eRan(G)NSn—1
— Gordon’s escape through the mesh lemma
True, as long as m > “complexity” of G N S*~!

“Complexity” = average diameter of G N'S"~! (Gaussian width). Can be
computed by finding the covering number of Ran(G) N S™!



Why deep nets...
and why not

Radically new inference tools

“Intelligence” = low-dimensional
latency + low-complexity decoder

What are we giving up?
— interpretability

— guarantees
(generalizablility)

— Science!
— ... still not automated
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Example of data misfit: Arts et al,

2007 (Sleipner CO2 injection field)

Rare data

©
-
©
©
-+
(o=
©
©
(=
=)
o]
<

Co-train from simulations and data

Explaining beyond modeling



Deep generative compressed sensing

Linear inverse problem
y = Azg+1

with A € R™*" Gaussian iid with m < n.

Classical regularization:
min [ly — Az[); + All].

New: require x € Ran(G) for some deep generator G. Then
T=G(2)

where
z =argmin{|ly — AG(2)[2 : z € R",||z[]> < r}

Complexity of G: z € R¥ and G is L-Lipschitz.



Deep generative compressed sensing

Theorem [Bora, Jalal, Price, Dimakis, 2017]

For every 6 € (0,1), if

then it holds with probability 1 — e=©(™) that

|Z — oll2 < 6 min ||G(2) = @ollz + 3|nll2 + 26

Izll2<r
If G is a deep generator with width w and depth d (dense ReLU), then

L < wo@

and 7 is a non-issue.
A version of the theorem deals with ||y — AG(Z)|| within € of optimum.



Neural networks
for inverse problems

Y
m > d
<—“‘““"
-

N~

NN

OK for small scale problems
Invert F (train on simulations) -- or bypass F (train on real data)



Neural networks
for inverse problems

"

X )“'“

Auxiliary data extension task

More robust or favorable inversion
Bridge real vs synthetic divide



Depth (m)

0

Example: Deepwater statics

Measured Seawater Acoustic Vel
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Standardized Waveform Amplitude

Standardized Waveform Amplitude
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