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Multiscale problems
• Physical parameters (e.g. permeability, fractures, … ) with multiple scales & high contrast
• Simulations need fine grid to resolve heterogeneities, which is computationally expensive
• Accurate coarse-grid models are necessary



Model coarsening

• Use a coarse grid, which does not resolve scales and contrasts
• Coarse-grid computational model is constructed by local simulations
• Coarse grid size is fixed, and is chosen according to computational concerns
• Model enhancements can be done by offline or online model updates



A model problem
• Consider the multiscale problem 

where 𝜅(𝑥) is a high contrast multiscale coefficient, 
and 𝑓(𝑥) is a given source function
• Develop coarse-grid model based on rigorous 

mathematical analysis
• Challenges:
• How to add more degrees of freedom per 

coarse element
• How to identify channels and localize their 

effects



Local multiscale basis functions
• Auxiliary multiscale functions: spectral problem on each coarse cell 𝐾 (coarse d.o.f)

• Each auxiliary function           will give a multiscale basis function
• Perform constraint energy minimization on oversampled region

  
with constraints                                           and

Chung, Efendiev and Leung, 2018



Decay of basis functions and error bound
• Basis functions have exponential decay property for high contrast media

• This gives the size of the oversampled region, which is 𝑂 (	log 𝜅!/𝐻 	)
• Error bound independent of scales and contrasts of the media

where

assuming 𝑙" basis functions are constructed for the coarse cell 𝐾 



Eigenvalues and channels
• Number of small eigenvalues is related to high contrast channels

1
𝜆

Contrast = 10 Contrast = 1000



Example
• Consider a high contrast heterogeneous coefficient 𝜅
• Error for different choices of coarse grid sizes

• Error for different numbers of basis functions



Online model enrichment
• Online basis functions* 𝛽 by solving local problems using local residuals

• Adaptive enrichment: fixed 0 < 𝜃 < 1, start with offline basis functions
• Compute a solution
• Compute local residuals 𝛿#
• Choose 𝑘 coarse cells using the condition
• Compute basis, and repeat 

(Solve in oversampled region)

Convergence 
theory:

(where 𝐸 → 0 exponentially when oversampling size increases)

*Chung, Efendiev and Leung, 2018



Example

• Consider a high contrast heterogeneous coefficient 𝜅
• Error for uniform enrichment (𝜃 = 0)

• Error for adaptive enrichment (𝜃 = 0.1)



Upscaling: motivated by multiscale ideas
• Define local basis functions such that coarse degrees of freedoms have physical 

meaning, e.g. average solutions in each continua
• In general

• If we define the basis functions such that

• Then we have

• This motivates the constraint energy minimization for basis construction



Example 1

• Consider a poroelastic problem in 
fracture porous media

• where 𝑝' and 𝑝( are matrix and fracture 
pressures
• 𝑢 is the displacement field

Vasilyeva, Chung, Efendiev and Kim, 2019



Constraints
• Pressure basis functions (matrix)

• Pressure basis functions (fracture)

• Displacement

where𝑚



Basis function: local problems with constraints

Local problem for 
pressure basis

The matrices 𝐶' and 𝐶( 
define the constraints



Results

Fine problem size: 59394
Coarse problem size: 1393 (20x20), 5165 (40x40)

Fine

Coarse



Example 2

• Consider geothermal systems

Vasilyeva, Babaei, Chung, Alekseev, 2019



• Flow equations

• Heat transfer equations



Results

• Consider a domain with 1000 fracture lines
• Fine grid has 26,935 DOFs and coarse grid has 5,104 DOFs

Error at the final timeGeometry 2





Nonlinear upscaling
• Local nonlinear maps instead of basis functions
• Consider a nonlinear multiscale problem

   where 𝐺 is a nonlinear multiscale operator
• (1) Identify macroscopic variables
• (2) Instead of basis function, we solve local problem, with constraints related to 

the macroscopic variables, to obtain downscaling maps

• (3) Obtain the coarse grid model
Map:



Choosing macroscopic variables

• These are typically average solutions on continua

• The variables {𝑈)
*,#}, for the 𝑖-th coarse element, 𝑗-th continua within the 

element and 𝑛-th time step
• Our goal is to find a coarse-scale equation for these variables. The equation has 

the following general form

• where        is an average operator determined for the 𝑖-th coarse element and 𝑗-th 
continua within the element
• 𝐿 = 𝑛 or 𝑛 + 1



Local downscaling maps

• Computation of the average operator         needs local solutions

• Let 𝑐 = {𝑐'
, } be a set of values defined on continua: 𝑙-th element, 𝑚-th continua

• The local problem is defined as: find                   such that

   subject to the constraints

• The above problem is solved on an oversampled region (using a fine mesh numerically)



Coarse-grid model
• The global downscaling function is defined using the macroscopic values

• To define the coarse-grid model, we approximate the solution as 𝑈 ≈ ℱ I𝑈  in

    and use the following variational form

• Applying time discretization

(𝑉-	= test function)



Example
• Consider two-phase flow equations

• This can be written in the general form as

• We define 𝑈 = (𝑆, 𝑃)
• The nonlinear operator                                                                               where

• Also, we take MU = (𝑆, 0)

Vasilyeva, Leung, Chung, Efendiev and Wheeler, 2019, 2020 



• We will solve the following local problem to obtain downscaling function
• The oversampled domain 𝜔. is defined for each coarse edge 𝐸
• Given macroscopic values for pressure R𝑃 = { R𝑃#

)}, for saturation ̅𝑆 = { ̅𝑆#
)}, we find 

the local downscaling functions                                by 

Constraint for pressure

Constraint for saturation



• We next find the coarse-scale equation by finite volume scheme
• Recall the equations

• Applying finite volume scheme, and using the downscaling functions

• Note that the ”fluxes” are nonlinear functions of saturations and pressures in 
neighboring cells.

where



T=2.5 T=5

𝜅
Relative errors

Saturation

𝑆 ̅𝑆

̅𝑆!" ̅𝑆#$%



Learning coarse-scale models
• The coarse-scale models require solutions of local nonlinear problems
• These problems need to be solved on-the-fly
• Coarse edge values of the downscaling function are needed
• We can build a map between macroscopic values and the edge values of 

downscaling functions, this map can be used to form the coarse-scale equation

𝐾

Values of “flux” on cell 
boundaries



• Machine learning is helpful in building such map
• Training data can be obtained from simulations or measurements, lead to a data-driven 

computational model
• We use ideas from deep neural networks, localized upscaling concepts lead to localized 

network models

Fully connected Locally connected

̅𝑆 ̅𝑆



Training concepts

𝐾23

𝐾#3

A CNN layer 
if neededOversampled domains

CNN

A local network

𝐾)3

Downscaling 
function



Example 
• Consider the two-phase flow problem in fracture media

• Compute the relative permeabilities by deep neural 
networks

Training

Testing



Thank you


