Generalized multiscale finite element methods for a class of nonlinear flow problems

Eric Chung Department of Mathematics Chinese University of Hong Kong

November 12, 2023

Multiscale problems

- Physical parameters (e.g. permeability, fractures, ...) with multiple scales & high contrast
- Simulations need fine grid to resolve heterogeneities, which is computationally expensive
- Accurate coarse-grid models are necessary

Acknowledgements: K. Sternlof, A. Ahmadov,

Model coarsening

- Use a coarse grid, which does not resolve scales and contrasts
- Coarse-grid computational model is constructed by local simulations
- Coarse grid size is fixed, and is chosen according to computational concerns
- Model enhancements can be done by offline or online model updates

A model problem

• Consider the multiscale problem

$$\begin{aligned} -\nabla\cdot(\kappa\nabla u) &= f & \text{ in } \Omega \\ u &= 0 & \text{ on } \partial\Omega \end{aligned}$$

where $\kappa(x)$ is a high contrast multiscale coefficient, and f(x) is a given source function

- Develop coarse-grid model based on rigorous mathematical analysis
- Challenges:
 - How to add more degrees of freedom per coarse element
 - How to identify channels and localize their effects

Local multiscale basis functions

• Auxiliary multiscale functions: spectral problem on each coarse cell K (coarse d.o.f)

$$a_K(\phi, w) = \lambda s_K(\phi, w)$$

$$a_K(\phi, w) = \int_K \kappa \nabla \phi \cdot \nabla w, \quad s_K(\phi, w) = \int_K \widetilde{\kappa} \phi w$$

- Each auxiliary function $\phi_i^{(K)}$ will give a multiscale basis function $\psi_{i, ext{ms}}^{(K)}$
- Perform constraint energy minimization on oversampled region

$$\min_{\psi \in H^1_0(K^+)} \int_{K^+} \kappa |\nabla \psi|^2$$

with constraints $\ \ s_K(\psi,\phi_\ell^{(K)})$ =

=
$$\delta_{\ell i}$$
 and $s_J(\psi, \phi_\ell^{(J)}) = 0$

Chung, Efendiev and Leung, 2018

Decay of basis functions and error bound

• Basis functions have exponential decay property for high contrast media

- This gives the size of the oversampled region, which is $O(\log(\kappa_c/H))$
- Error bound independent of scales and contrasts of the media

$$\|u-u_H\|_V \lesssim H \Lambda^{-rac{1}{2}} \|f\|_2$$
 where $\Lambda = \min_K \lambda_{l_K+1}^{(K)}$

assuming l_K basis functions are constructed for the coarse cell K

Eigenvalues and channels

• Number of small eigenvalues is related to high contrast channels

$$a_K(\phi,w)=\lambda s_K(\phi,w)$$

14/00

- Consider a high contrast heterogeneous coefficient κ
- Error for different choices of coarse grid sizes

Number basis per K	Η	# oversampling coarse layers	L_2 error	energy error
3	1/10	3	0.33%	3.73%
3	1/20	$4 (\log(1/20)/\log(1/10)*3=3.9031)$	0.047%	1.17%
3	1/40	$5 (\log(1/40)/\log(1/10)*3=4.8062)$	0.010%	0.47%
3	1/80	$6 \ (\log(1/40)/\log(1/10)^*3=5.7093)$	0.0015%	0.15%

• Error for different numbers of basis functions

Number basis per element	H	# oversampling coarse layers	L_2 error	energy error
1	1/10	4	77.30%	87.07%
2	1/10	4	30.21%	49.66%
3	1/10	4	24.27%	44.46%
4	1/10	4	0.11%	1.50%
5	1/10	4	0.08%	1.26%

Online model enrichment

• Online basis functions* β by solving local problems using local residuals

$$a(eta,v)+s(\pieta,\pi v)=r_{K^+}(v)$$
 (Solve in oversampled region)

- Adaptive enrichment: fixed $0 < \theta < 1$, start with offline basis functions
- Compute a solution $u_{H}^{(m)} \in V_{H}^{(m)}$
- Compute local residuals δ_i
- Choose k coarse cells using the condition $\sum_{i=1}^{n} \delta_i^2 < \theta \sum_{i=1}^{n} \delta_i^2$
- Compute basis, and repeat

Convergence theory:

gence $\|u - u_H^{(m+1)}\|_a^2 \lesssim (E + \theta) \|u - u_H^{(m)}\|_a^2$

(where $E \rightarrow 0$ exponentially when oversampling size increases)

- Consider a high contrast heterogeneous coefficient κ
- Error for uniform enrichment ($\theta = 0$)

Number of offline basis	online iteration	oversampling layers	L_2 error	energy error
3	0	2	30.01%	82.57%
3	1	2	0.0066%	0.0030%
3	2	2	4.45e-07%	1.22e-07%

• Error for adaptive enrichment ($\theta = 0.1$)

Number of offline basis	DOF	oversampling layers	L_2 error	energy error
3	300	2	30.01%	82.57%
3	356	2	8.68%	22.06%
3	378	2	4.87%	5.41%
3	392	2	4.46%	1.50%

Upscaling: motivated by multiscale ideas

- Define local basis functions such that coarse degrees of freedoms have physical meaning, e.g. average solutions in each continua
- In general

$$u_{H} = \sum_{K} \sum_{\ell} u_{\ell}^{(K)} \psi_{\ell,\mathsf{ms}}^{(K)}$$

• If we define the basis functions such that

$$\int_{K_m} \psi_{\ell,\mathsf{ms}}^{(K)} = \delta_{m\ell}$$

• Then we have

$$\int_{K_m} u_H = u_m^{(K)}$$

• This motivates the constraint energy minimization for basis construction

• Consider a poroelastic problem in fracture porous media

$$a_{m}\frac{\partial p_{m}}{\partial t} + \alpha \frac{\partial \varepsilon^{v}}{\partial t} - \operatorname{div}(b_{m} \operatorname{grad} p_{m}) + \eta_{m}\beta(p_{m} - p_{f}) = f_{m}, \quad x \in \Omega,$$

$$a_{f}\frac{\partial p_{f}}{\partial t} + \frac{\partial b}{\partial t} - \operatorname{div}(b_{f} \operatorname{grad} p_{f}) + \eta_{f}\beta(p_{f} - p_{m}) = f_{f}, \quad x \in \gamma,$$

$$-\operatorname{div}(\sigma(u) - \alpha p_{m}\mathcal{I}) + r_{f}p_{f} = 0, \quad x \in \Omega.$$

- where p_m and p_f are matrix and fracture pressures
- *u* is the displacement field

Constraints

• Pressure basis functions (matrix)

$$\int_{K_j}\psi_0^i\,dx=\delta_{i,j},\quad \int_{\gamma_j^{(l)}}\psi_0^i\,ds=0,\quad l=\overline{1,L_j},$$

• Pressure basis functions (fracture)

$$\int_{K_j} \psi_l^i \, dx = 0, \quad \int_{\gamma_j^{(l)}} \psi_l^i \, ds = \delta_{i,j} \delta_{m,l}, \quad m = \overline{1, L_j}, \qquad \text{where} \qquad \gamma_j^{(l)} = K_j \cap \gamma^{(l)}$$

• Displacement

(1) X-component, $\psi^{X,i}$:

$$\int_{K_j} \psi_x^{X,i} \, dx = \delta_{i,j}, \quad \int_{K_j} \psi_y^{X,i} \, dx = 0,$$

(2) Y-component, $\psi^{Y,i}$:

$$\int_{K_j} \psi_x^{Y,i} \, dx = 0, \quad \int_{K_j} \psi_y^{Y,i} \, dx = \delta_{i,j}.$$

Basis function: local problems with constraints

Results

K^s	e_p	e_{u_x}	e_{u_y}
	Coarse g	grid $20 imes$	20
1	4.740	86.865	82.598
2	0.723	43.721	37.034
3	0.369	6.716	4.668
4	0.359	2.718	2.854
	Coarse g	grid $40 imes$	40
1	1.986	96.667	95.454
2	0.191	78.718	74.957
3	0.174	30.550	25.220
4	0.158	4.1302	3.321
6	0.157	1.127	1.233

Fine problem size: 59394 Coarse problem size: 1393 (20x20), 5165 (40x40)

Consider geothermal systems

Flow terms (i) r_{mf} and r_{fm} (ii) $- \operatorname{div}(k_m \operatorname{grad} p_m)$ (iii) $- \operatorname{div}(k_f \operatorname{grad} p_f)$ Heat transfer terms (i) L_{mf} and L_{fm} (ii) $(c\rho)_m \operatorname{div}(q_m T_m) - \operatorname{div}(\lambda_m \operatorname{grad} p_m)$ (iii) $(c\rho)_f \operatorname{div}(q_f T_f) - \operatorname{div}(\lambda_f \operatorname{grad} p_f)$

• Flow equations

$$a_m rac{\partial p_m}{\partial t} - s_m rac{\partial T_m}{\partial t} - \operatorname{div} (k_m \operatorname{grad} p_m) + r_{mf} = g_m^p, \quad x \in \Omega,$$

 $a_f rac{\partial p_f}{\partial t} - s_f rac{\partial T_f}{\partial t} - \operatorname{div} (k_f \operatorname{grad} p_f) - r_{fm} = g_f^p, \quad x \in \gamma,$

• Heat transfer equations

$$\begin{aligned} (c\rho)_m \frac{\partial T_m}{\partial t} + (c\rho)_w \operatorname{div}(q_m T_m) \\ &- \operatorname{div} \left(\lambda_m \operatorname{grad} T_m\right) + L_{mf} = (c\rho)_w g_m^T, \quad x \in \Omega, \\ (c\rho)_f \frac{\partial T_f}{\partial t} + (c\rho)_w \operatorname{div}(q_f T_f) \\ &- \operatorname{div} \left(\lambda_f \operatorname{grad} T_f\right) - L_{fm} = (c\rho)_w g_f^T, \quad x \in \gamma, \end{aligned}$$

Results

- Consider a domain with 1000 fracture lines
- Fine grid has 26,935 DOFs and coarse grid has 5,104 DOFs

Geometry 2

Error at the final time

K^M	e_{heat}^C	e^F_{heat}	K^M	e^{C}_{flow}	e^F_{flow}
	Geometry	12		Geometrų	y 2
1	-	-	1	-	-
2	43.955	60.192	2	0.134	2.066
3	22.208	33.411	3	0.034	0.206
4	1.257	1.717	4	0.031	0.041
6	0.088	0.113	5	0.031	0.031

Nonlinear upscaling

- Local nonlinear maps instead of basis functions
- Consider a nonlinear multiscale problem

 $U_t + G(x, U, \nabla U) = g$

where G is a nonlinear multiscale operator

- (1) Identify macroscopic variables
- (2) Instead of basis function, we solve local problem, with constraints related to the macroscopic variables, to obtain downscaling maps

$$\phi_t + G(x, \phi, \nabla \phi) = \mu$$
 Map: $U \mapsto \phi$

• (3) Obtain the coarse grid model

Choosing macroscopic variables

- These are typically average solutions on continua
- The variables $\{U_j^{n,i}\}$, for the *i*-th coarse element, *j*-th continua within the element and *n*-th time step
- Our goal is to find a coarse-scale equation for these variables. The equation has the following general form

$$U_j^{n+1,i} - U_j^{n,i} - \overline{G}_j^i(\overline{U}^L) = 0$$

- where \overline{G}_{j}^{i} is an average operator determined for the *i*-th coarse element and *j*-th continua within the element
- L = n or n + 1

Local downscaling maps

- Computation of the average operator \overline{G}_{j}^{i} needs local solutions
- Let $c = \{c_m^{(l)}\}$ be a set of values defined on continua: *l*-th element, *m*-th continua
- The local problem is defined as: find $N_{\omega_i}(x;c)$ such that

$$G(x, N_{\omega_i}(x; c), \nabla N_{\omega_i}(x; c)) = \sum_{m,l} \mu_{i.m}^{(l)}(c) I_{K_m^{(l)}}$$
 in ω_i^+

subject to the constraints

$$\int_{\omega^{+}} N_{\omega_{i}}(x;c) I_{K_{m}^{(l)}}(x) = c_{m}^{(l)}$$

• The above problem is solved on an oversampled region (using a fine mesh numerically)

Coarse-grid model

• The global downscaling function is defined using the macroscopic values

$$\mathcal{F}(\overline{U}) = \sum_i N_{\omega_i} \chi_{\omega_i}$$

• To define the coarse-grid model, we approximate the solution as $U \approx \mathcal{F}(\overline{U})$ in

$$U_t + G(x, U, \nabla U) = g$$

and use the following variational form

$$(\frac{\partial}{\partial t}\mathcal{F}(\overline{U}), V_H) + (G(x, \mathcal{F}(\overline{U}), \nabla \mathcal{F}(\overline{U})), V_H) = (g, V_H)$$
 (V_H = test function)

Applying time discretization

 $(\mathcal{F}(\overline{U}^{n+1}), V_H) - (\mathcal{F}(\overline{U}^n), V_H) + \Delta t(G(x, \mathcal{F}(\overline{U}^L), \nabla \mathcal{F}(\overline{U}^L)), V_H) = \Delta t(g, V_H)$

Consider two-phase flow equations

$$-div(\lambda(S)\kappa\nabla p) = q_p$$
$$\partial_t S + \nabla \cdot (uf(S)) = q, \ u = -\lambda(S)\kappa\nabla p$$

• This can be written in the general form as

$$\partial_t(MU) + \nabla \cdot G(x,t,U,\nabla U) = g$$

- We define U = (S, P)
- The nonlinear operator $G(x,U,\nabla U) = (G_1(x,U,\nabla U)), G_2(x,U,\nabla U))$ where

 $G_1(x, U, \nabla U) = (\kappa(x)F(S)\nabla P)$ $G_2(x, U, \nabla U) = (\kappa(x)\lambda(S)\nabla P)$

• Also, we take MU = (S, 0)

- We will solve the following local problem to obtain downscaling function
- The oversampled domain ω_E is defined for each coarse edge E
- Given macroscopic values for pressure $\overline{P} = \{\overline{P}_i^j\}$, for saturation $\overline{S} = \{\overline{S}_i^j\}$, we find the local downscaling functions $(N_{p,E}, u_{ms,E}, N_{s,E})$ by

$$\begin{split} \int_{\omega_E} \lambda^{-1}(\overline{S}) u_{ms}(\overline{S},\overline{P}) \cdot v &- \int_{\omega_E} N_{p,E}(\overline{S},\overline{P}) \nabla \cdot v = 0 \; \forall v \\ \int_{\omega_E} \nabla \cdot (u_{ms}(\overline{S},\overline{P})) w + \int_{\omega_E} \mu_p w = 0 \\ \int_{\omega_E} N_{p,E}(\overline{S},\overline{P}) I_{K_i^{(j)}} &= \overline{P}_i^j \end{split}$$

$$-div(\lambda(S)\kappa\nabla p) = q_p$$
$$u = -\lambda(S)\kappa\nabla p$$

Constraint for pressure

$$\int_{\omega_E} \nabla \cdot (u_{ms}(\overline{S}, \overline{P}) \tilde{f}(N_{s,E}(\overline{S}, \overline{P}))) w + \int_{\omega_E} \mu_s w = 0$$
$$\int_{\omega_E} N_{s,E}(\overline{S}, \overline{P}) I_{K_i^{(j)}} = \overline{S}_i^j$$

$$\partial_t S + \nabla \cdot (uf(S)) = q$$

Constraint for saturation

- We next find the coarse-scale equation by finite volume scheme
- Recall the equations

 $-div(\lambda(S)\kappa\nabla p) = q_p$ $\partial_t S + \nabla \cdot (uf(S)) = q, \ u = -\lambda(S)\kappa\nabla p.$

• Applying finite volume scheme, and using the downscaling functions

$$\sum_{m,l} T_{i,l}^{j,m}(\overline{P}_{i}^{n+1,j} - \overline{P}_{n}^{n+1,m}) = \overline{Q}_{i}^{n+1,j}$$
where
$$T_{i,l}^{j,m} = -\sum_{E \cap \partial K_{i}^{(j)}} \int_{E} u_{ms}(\overline{S}^{n}, \vec{e}_{i}^{j}) \cdot n_{\partial K_{i}^{(j)}}$$

$$\overline{S}_{i}^{n+1,j} - \overline{S}_{i}^{n,j} - \sum_{E \cap \partial K_{i}^{(j)}} (n_{\partial K_{i}^{(j)}} \cdot n_{E}) \overline{F}_{E}^{n} = \overline{Q}_{i,w}^{n+1,j}$$

$$\overline{Q}_{i}^{n+1,j} = \int_{K_{i}^{(j)}} q(t_{n+1}, \cdot), \quad \overline{Q}_{i,w}^{n+1,j} = \Delta t \int_{K_{i}^{(j)}} q_{w}(t_{n+1}, \cdot)$$

$$[\vec{e}_i^j]_l^m = \delta_{jm}\delta_{il}$$

 Note that the "fluxes" are nonlinear functions of saturations and pressures in neighboring cells.

$$\lambda_w(S) = S^2,$$

 $\lambda_o(S) = (1-S)^2$

$$\begin{array}{|c|c|c|c|c|c|}\hline T & \frac{\|\overline{S}_{ms} - \overline{S}\|_{L^2}}{\|\overline{S}\|_{L^2}} & \frac{\|\overline{S}_{FVM} - \overline{S}\|_{L^2}}{\|\overline{S}\|_{L^2}} \\ \hline 2.5 & 10.64\% & 20.79\% \\ \hline 5 & 8.60\% & 23.71\% \end{array}$$

Relative errors

T=5

Learning coarse-scale models

- The coarse-scale models require solutions of local nonlinear problems
- These problems need to be solved on-the-fly
- Coarse edge values of the downscaling function are needed
- We can build a map between macroscopic values and the edge values of downscaling functions, this map can be used to form the coarse-scale equation

- Machine learning is helpful in building such map
- Training data can be obtained from simulations or measurements, lead to a data-driven computational model
- We use ideas from deep neural networks, localized upscaling concepts lead to localized network models

Locally connected

Fully connected

• Consider the two-phase flow problem in fracture media

 $-div(\lambda(S)\kappa\nabla p) = q_p$ $\partial_t S + \nabla \cdot (uf(S)) = q, \ u = -\lambda(S)\kappa\nabla p.$

Compute the relative permeabilities by deep neural networks

Error	Nonlocal, ML			
EIIOI	MAE (%)	RMSE (%)		
	Tra	ining		
$f_{w,1}$	1.167	0.752		
$f_{w,2}$	1.479	1.252		
$f_{w,3}$	2.000	2.031		
$f_{w,4}$	2.121	1.934		
$f_{w,5}$	1.161	1.067		
	Testing			
$f_{w,1}$	1.163	0.827		
$f_{w,2}$	1.417	1.099		
$f_{w,3}$	1.814	1.662		
$f_{w,4}$	2.149	1.958		
$f_{w,5}$	1.093	0.939		

Thank you