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Motivation

• Existing neural-network-based methods for solving differential equations are limited by equation 
specificity.

• e.g., PINNs, FNO, DeepONets...

• Need frequent retraining when switching to new problems.

• Inspired by Large Language Models, we propose In-Context Operator Networks (ICON).

• Use a single neural network to solve a wide range of scientific machine learning tasks.

• Get rid of retraining (even fine-tuning) the neural network.

• Leverage commonalities shared across various tasks, so that only a few examples are needed when 
learning a new operator.

• We need models that can adapt to new physical systems and tasks, just as a human would.



Operator: mapping from condition to QoI, both 
are functions.

Examples: condition-QoI pairs associated with 
the same unknown operator.

Training: ICON is trained to be an "operator 
learner", instead of an "operator approximator".
- Input: prompted examples and the question 

condition.
- The model learns the operator from 

the examples and apply to the question 
condition.

- Output: prediction of the question QoI 
function, evaluated at "queries".

Inference: learn and apply the new unknown 
operator, without weight updates.

Brief Introduction



List of the problems, including forward and inverse ODE, PDE, and mean-field control 
problems,  solved with a single neural network, with about 30M parameters.



A Glance of ICON for ODE and PDE Problems

Colored dotted lines: condition and QoI functions in examples.
Grey dots: data of the examples used in the prompts.
Blue dots: data in the question conditions.
Red dots: prediction of the question QoI.
Solid black lines: ground truth. Note the consistency between prediction and ground truth.



Testing on In-Distribution Operators

Average relative testing errors for all 19 problems listed in the table.
The error decreases with an increasing number of examples in the prompt.
With only five examples, the relative error goes down to about 1%-2% for most cases.



Three examples and the question share 
the same terminal cost as the unknown 
parameter in the operator.

Plots: density field in temporal-spatial 
domain.

Blue dots: data for example condition 
(density at time from 0 to 0.5).
Red dots: data for example QoI
(density at time from 0.5 to 1.0).
Black dots: data for question condition.

We make the prediction on

Mean-Field Control Problem (Problem #17)



More/Less Data Points (Super/Sub-Resolution)

Still the same problem (mean-field control with terminal 
cost as the unknown parameters).

As we increase the number of data points in each 
condition/QoI function, the error decreases and finally 
converges below 1%.

ICON is trained using 41 to 50 data points in each function, 
represented by the narrow red region.



Testing on Out-of-Distribution Operators

Here the coordinates are 
the operator parameters.

Black rectangle: training region 
for operator parameters.

ICON demonstrated accurate 
prediction capabilities even 
with operator parameters 
extending beyond the training 
region.

ODE 3:

Linear reaction-diffusion PDE:



Generalization to Equations of New Forms (New ODE)

ODE 2 (in training):            ODE 3 (in training):             New ODE (not in training):

The error shows a decreasing trend as the training dataset becomes larger and more diversified.
This is preliminary evidence of learning operators for equations of new forms that were never 
seen in training data.



Multi-Modal In-Context Operator Learning
The above results come from our first paper [1], where the model is a transformer-based encoder-decoder.
In our second paper [2], we proposed "ICON-LM", a language-model-like architecture.
- Simplified, only one transformer.
- Fewer parameters with higher accuracy.
- Multi-modal: apart from data examples, optionally take as input the "captions" that integrate human knowledge 

about the operator, expressed through natural language descriptions and equations.

[1]: "In-context operator learning with data prompts for differential equation problems." PNAS, 120.39 (2023): e2310142120.
[2]: "Prompting In-Context Operator Learning with Sensor Data, Equations, and Natural Language." arXiv preprint arXiv:2308.05061 (2023).



Improved Language-Model-Like Architecture

Key ideas of the improved ICON-LM model:

- Inspired by "next token prediction" in 
large language models, ICON-LM 
utilizes the input condition-QoI pairs in an 
autoregressive way.

- A special attention mask tailored for 
operator learning, which keeps 
permutation invariance for tokens in the 
same function.

ICON-LM model
(only two condition-QoI pairs for clarity)

Attention mask in ICON-LM model
(white cells indicate 1, grey cells indicate 0)



Caption Helps Few-Shot In-Context Operator Learning

Vague caption (without numbers): The rate of change of $u(t)$ over time is given by the equation $du(t)/dt = a_1 
\cdot u(t) + a_2 \cdot c(t) + a_3$. condition: $u(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t\in[0,1]$
Precise caption (with numbers): The relationship between $u(t)$ and $c(t)$ is governed by the equation 
$du(t)/dt = 0.48 \cdot u(t) + 1.06 \cdot c(t) + 0.691$ . condition: $u(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t\in [0,1]$



Solving Inverse Hyperbolic Conservation Laws with ICON-LM

Periodic boundary condition

Unknown parameters (a,b,c) that need to be inferred from prompted examples.

Forward operator:
Backward operator as the reverse, not unique

The ICON-LM model is trained in a supervised manner, without auto-differentiation in the loss 
function.
The data are generated by solving the conservation laws numerically with the third-order WENO 
scheme.

- Reduce computational cost during training.
- Learn from battle-tested numerical schemes to handle discontinuities.



Randomly sample a, b, c in [-1,1]. Then for 
each (a, b, c):

- Sample Initial Conditions: Sample from 
periodic Gaussian process.

- Numerical Simulation: Use third-order 
WENO finite volume and fourth-order 
RK method to solve the conservation 
law. dx = 0.01, dt = 0.0005, t from 0 to 
0.5.

- Data Collection: Consider every time 
step within the time interval [0,0.4], 
treat it as an individual initial condition. 
Each has an associated function that 
appears 0.1 time units later. They will 
form a condition-QoI pair for the 
forward/backward operator. 

Data Preparation



Example Results (Forward Operator)

Given condition at t = 0.0, forward prediction at t = 0.1 overlaps with the ground truth.

Here the operator are inferred from 5 examples of condition-QoI pairs.



More Example Results (Forward Operator)

a = 0.6, b = -0.6, c = -0.6

a = 0.6, b = 0.6, c = 0.6



Example Results (Backward Operator)

(t=0.0) backward prediction is different from the given label, due to non-uniqueness of the backward solution.
(t=0.1) If we apply the exact forward operator to the backward prediction, the forward simulation overlaps with 
the input condition.



More Example Results (Backward Operator)

a = 0.6, b = -0.6, c = -0.6

a = 0.6, b = 0.6, c = 0.6



Relative Error

Consistency error: apply the exact forward operator to the backward prediction at t = 0, then compare with 
the condition function at t = 0.1

The backward predictions are extremely accurate,  evidenced by the low consistency error.

Note that all the predictions, including forward and backward predictions for different equations, are given 
by a single neural network!



Why a very few examples are sufficient to learn the operator?

- Only need to learn the operator for a certain distribution of conditions.

- We leveraged the commonalities shared in training and testing operators. ICON only need to 
identify the equation and hidden parameters.

- For a larger family of operators, ICON requires more examples (especially for those complicated 
operators), as well as a larger neural network with more training cost.

What's next?

Scale up

- Scaling up large language models improves generalization, even leads to emergent 
abilities beyond human expectations.

- Numerical tasks is still a weak spot in the current AI ecosystem.

- We anticipate the possibility of AI for general numerical tasks with large ICON models.

Discussion
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