Introduction to Wasserstein manifold Wasserstein Geometric Flow Parameterized Wasserstein geometric flow Numerical Examples

Parameterized Wasserstein Geometric Flow

Haomin Zhou School of Math, Georgia Tech

Collaborators: Wuchen Li (South Carolina) Shu Liu (UCLA), Xiaojing Ye (Georgia State), Hao Wu (Wells Fargo), and Hongyuan Zha (CUHK-SZ)

Partially Supported by NSF

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

0000

Introduction to Wasserstein manifold Wasserstein Geometric Flow Parameterized Wasserstein geometric flow Numerical Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Introduction to Wasserstein manifold

Introduction to Wasserstein manifold Wasserstein Geometric Flow Parameterized Wasserstein geometric flow Numerical Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ultimate goal of our study

Design efficient methods to compute the solution of Wasserstein geometric flow (especially the dynamics of probability distribution ρ_t), so that one can *efficiently* generate samples from the distribution ρ_t at different time t; and sample particle trajectories from the corresponding dynamical systems, especially in high dimensions, while providing rigorous error bounds.

Introduction to optimal transport

- Monge optimal map (1781).
- Kantorovich relaxation (1942).
- Benamou-Brenier formula (2000) :

$$W_2^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{1}{2} |\nu|^2 \ \rho \ dxdt \right\}, \tag{1}$$

subject to: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \nu) = 0, \ \rho(\cdot,0) = \rho_0, \ \rho(\cdot,1) = \rho_1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

W₂(ρ₀, ρ₁) defines a distance between two probability densities.

Introduction to Wasserstein manifold Wasserstein Geometric Flow Parameterized Wasserstein geometric flow Numerical Examples

Euclidean metric vs. Wasserstein metric

An extensive literature: Otto, Villani, Kinderlehrer, McCann, Carlen, Lott, Strum, Gangbo, Yau, Evans, Caffarelli, Figalli, Chow, Osher, Engquist, Fathi and many more.

¹C. Villani, Optimal transport. Old and new. 2009

²F. Santambrogio, Optimal transport for applied mathematicians. 2015

Optimal transport on graph

The notion of optimal transport on discrete structures (graphs or networks) was proposed independently.

- A. Mielke (2011).
- J. Maas (2011).
- S.N. Chow, W. Huang. Y. Li, H.M. Zhou (2012):

$$\min_{\rho,\nu} \left\{ \int_0^1 \frac{1}{2} (\nu,\nu)_\rho \ dt \right\},$$
subject to:
$$\frac{d\rho}{dt} + \operatorname{div}_G(\rho\nu) = 0, \ \rho(\cdot,0) = \rho_0, \ \rho(\cdot,1) = \rho_1.$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• A rich subject with many studies on interesting math questions and applications.

Introduction to Wasserstein manifold Wasserstein Geometric Flow OOO OOO Numerical Examples

Wasserstein manifold

 The optimal transport distance induces a metric on probability density set \$\mathcal{P}(\mathbb{R}^d)\$, a bilinear form

$$g^{W}(\eta_1,\eta_2)=\int_{\mathbb{R}^d}rac{1}{2}(
abla \Phi_1,
abla \Phi_2)
ho dx.$$

where Φ_i (i = 1, 2) solves

$$-\nabla\cdot(\rho\nabla\Phi_i)=\eta_i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- (\$\mathcal{P}(\mathbb{R}^d)\$, \$g^W\$) form a Riemannian manifold known as Wasserstein manifold.
- Geometric flow can be constructed on $(\mathcal{P}(\mathbb{R}^d), g^W)$.

Wasserstein gradient flow

The Wasserstein gradient flow (WGF) of $\mathcal{F}(\rho)$ is

$$\frac{\partial \rho}{\partial t} = -\text{grad}_{W} \mathcal{F}(\rho) = \nabla \cdot (\rho \nabla \frac{\delta \mathcal{F}(\rho)}{\delta \rho}(x)).$$

WGF	Equation	Associated functional $\mathcal{F}(ho)$
Fokker-Planck equation	$\partial_t ho = abla \cdot (ho abla V) + D \Delta ho$	$\int V ho + D ho \log ho dx$
Porous Medium equation	$\partial_t ho = \Delta(ho^m)$	$\frac{1}{m-1}\int \rho^m dx$
Aggregation equation	$\partial_t ho = abla \cdot ig(ho abla (W * ho ig) ig)$	$\iint W(x-y)\rho(x)\rho(y) dxdy$

Table: Examples of Wasserstein gradient flows.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction to Wasserstein manifold Wasserstein Geometric Flow Ooo

Wasserstein Hamiltonian flow

The Wasserstein Hamiltonian flow (WHF)

$$\partial_t \rho(x,t) = \frac{\delta}{\delta \Phi_t} \mathcal{H}(\rho_t, \Phi_t) = -\nabla \cdot (\rho_t \nabla \Phi(x,t))$$

$$\partial_t \Phi(x,t) = -\frac{\delta}{\delta \rho_t} \mathcal{H}(\rho_t, \Phi_t) = -\frac{1}{2} |\nabla \Phi(x,t)|^2 - \frac{\delta \mathcal{F}}{\delta \rho}(\rho_t, x),$$
 (3)

with

$$\mathcal{H}(
ho,\Phi) = \int_{\mathbb{R}^d} rac{1}{2} |
abla \Phi|^2
ho dx + \mathcal{F}(
ho).$$

The density of a Hamiltonian flow in sample space is a Hamiltonian flow in density manifold¹.

¹S. Chow, W. Li, H. Zhou, Wasserstein Hamiltonian flows, J. Differential Equations 268 (3) (2020) (□) (2020)

Wasserstein Hamiltonian flow

WHF	Equation system	Hamiltonian $\mathcal{H}(ho, \Phi)$
Classical Hamiltonian system	$\partial_t \rho + \nabla \cdot (\rho \partial_p H(x, \nabla \Phi)) = 0$ $\partial_t \Phi + H(x, \nabla \Phi) = 0$	$\int H(x, \nabla \Phi(x))\rho(x) dx$ $H(x, p) = \frac{1}{2} p ^2 + V(x)$
Wasserstein Geodesic	$\partial_t \rho + \nabla \cdot (\rho \nabla \Phi) = 0$ $\partial_t \Phi + \frac{1}{2} \nabla \Phi ^2 = 0$	$\int \frac{1}{2} \nabla \Phi(x) ^2 \rho(x) dx$
Schrödinger equation ¹	$ \begin{aligned} &\partial_t \rho + \nabla \cdot (\rho_t \nabla \Phi_t) = 0 \\ &\partial_t \Phi + \frac{1}{2} \nabla \Phi_t ^2 = -V - \frac{\delta}{\delta \rho} \mathcal{F}(\rho, \cdot) + \frac{1}{2} \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \end{aligned} $	$\int (\frac{1}{2} \nabla \Phi ^2 + V) \rho dx + \mathcal{F}(\rho) + \mathcal{I}(\rho)$

Table: Examples of Wasserstein Hamiltonian flows.

There are many more examples like Schrödinger bridge problem and optimal density control.

¹The corresponding Schrödinger equation of wave function $\psi = \sqrt{\rho}e^{i\Phi}$ is

$$\mathrm{i}\partial_t\psi(x,t)=-\frac{1}{2}\Delta\psi(x,t)+V(x)\psi(x,t)+\frac{\delta}{\delta\rho}\mathcal{F}(|\psi(x,t)|^2,x)\psi(x,t).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Pushforward maps and parameterized space

- Consider a class of pushforward maps {T_θ}_{θ∈Θ} (T_θ : ℝ^d → ℝ^d) indexed by parameter θ ∈ Θ ⊂ ℝ^m.
- A family of parametric distributions known as Generative Model

$$\mathcal{P}_{\Theta} = \left\{ \rho_{\theta} = T_{\theta \#} \lambda \mid \theta \in \Theta \right\} \subset (\mathcal{P}, g^{W}),$$

 $T_{\theta \#} \lambda$ defined by $\rho_{\theta}(E) = \lambda(T_{\theta}^{-1}(E)).$

• Generative Models by pushforward maps provide an easy-to-sample framework^{1 2}.

¹Ian J. Goodfellow et al. Generative Adversarial Nets. NIPS, 2014. ²Martin Arjovsky et al. Wasserstein Generative Adversarial Networks. ICML, 2016.

Geometry on the parameter space

• Geometric structure on Θ by the pullback metric of g^W

$$G(heta) = \int_{\mathbb{R}^d} \partial_ heta T_ heta(z)^ op \partial_ heta T_ heta(z) \; d\lambda(z).$$

- Θ and $G(\theta)$ form a Riemannian manifold.
- Objective: Compute $\{\theta_t\}$ s.t. ρ_{θ_t} serves as an approximation of ρ_t . Samples can be conveniently generated from $\rho_{\theta_t} \approx \rho_t$ by pushforward maps. Error bounds in Wasserstein metric can be established.

Parameterized Wasserstein geometric flows

Parameterized WGF

$$\dot{\theta}_t = -G(\theta_t)^{\dagger} \nabla_{\theta} F(\theta_t).$$

with $F(\theta) = \mathcal{F}(\rho_{\theta})$.

Parameterized WHF

$$\begin{split} \dot{\theta} &= \nabla_{p} H(\theta, p) = G(\theta)^{-1} p, \\ \dot{p} &= -\nabla_{\theta} H(\theta, p) = \frac{1}{2} [p^{\top} G(\theta)^{-\top} (\partial_{\theta_{k}} G(\theta)) G(\theta)^{-1} p]_{k=1}^{m} - \nabla_{\theta} F(\theta). \end{split}$$
(4)

where

$$H(\theta, p) = rac{1}{2} p^{\top} G(\theta)^{\dagger} p + F(\theta).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Rigorous error bounds are established for $W_2(\rho_t, \rho_{\theta(t)})$

A 30-dim Parameteric Fokker-Planck equation

The 2-d projection of pushforward distribution of Fokker-Planck equation with potential

$$V(x) = \frac{1}{50} \left(\sum_{i=1}^{30} x_i^4 - 16x_i^2 + 5x_i \right).$$

A 10-dim PWHF with quadratic potential

Figure: histogram: projection of pushforward distribution, curve: true distribution

The 1-d projection of pushforward distribution compared to the true density function.

イロト 不得 トイヨト イヨト

3

Introduction to Wasserstein manifold Wasserstein Geometric Flow OOO

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで