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Optimization Example 1: Tokamak Divertor
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Optimization of divertor shape based on an adjoint method for MHD equations, W. Dekeyser, et al.
Collisional effects may be significant near the divertor. 1



Optimization Example 2: Stellarator Electromagnetic Coils
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Optimization of coil geometry based on an adjoint method for MHD equations, E. Paul, M. Landreman, et al.
Collisional effects may be significant near the plasma edge. 2



Main ideas of this talk

- Obstacle: Shape design requires optimization over many parameters &.
« Difficult for direct optimization methods.

- Solution: A major advantage of the adjoint method is that it can
simultaneously optimize over many parameters.

« Obstacle: The adjoint of the Boltzmann equation for velocity density f is
comparable to the linearized Boltzmann equation.
« Computationally intractable.
- Solution: Discretize Boltzmann using DSMC, then compute adjoint relative to
the DSMC velocities v
« Computationally efficient.

« Obstacle: DSMC may require rejection sampling, which is discontinuous in v
 The adjoint equations require differentiation.

- Solution: Differentiate the expectation (of rejection sampling), then sample
+ This leads to a new term: the score function 7



Boltzmann Equation

Inclusion of collisional effects is through the Boltzmann equation for rarefied
gases (or the Landau-Fokker-Plank equation for plasmas)

T v-vf=a(f)
f(o,x,v) =foonQ

f =% (b, up, Tp) ON 00
where
Q) = [ [ aWv—va.) (OAV) ~ Ff(v) dod,
v/ and v; are the velocities after collision between v and v;.

For simplicity, we will consider the spatially homogeneous Boltzmann equation,
without the term v - V,f.



Binary Collisions

1
o ® O pre-collision velocities
®----> A
“ v ® O post-collision velocities
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Elastic collision preserves mass, momentum and energy. Assume particles have
equal mass, then

Vitv = Vi+V

vl +v? = v+ VP



Elastic Binary Collision Formulas

The o-representation:

Voo =1/2(vtva) H1/2v —vale v Y
Vi =1/2(v+vi) —1/2)v —vilo v — V)|

(1)

o € 8% is the vector of collision angles. Also note that |v — v4|=|v/ — v;| and

v—v/
define a = T
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Collision Formulas in Matrix Form

We can then write the collision formulas as

4 v Vv v/
<V;> :A(O', Oé) <V1> ’ <V1> B B(O-7 Oé) (V;) ’ TG

1(1 L -
A(a,a):<+0aT 004)7

2 \l—cga' I+ca

where [ is the identity matrixin R3and B=AT = A~".
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The Collision Kernel

Different types of rarefied gas have different collision kernels:
q(v—vs,0) =q(|v—v4,0), where cosf =0 -a.
0 is the scattering angle. For the special case q = C5(0)|v — v4|®

* 8 = 0: Maxwellian collision model. We also take Cs to be a constant.
« 3 > 0: Hard Potential model
« 8 < 0: Soft Potential model

« 3 = —3: Coulomb Potential model
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Optimization Problem for Parameter ¢ in Initial Data

T _a.p.
Hou) = folv: ).

o) = [ av - v )FORSV) — Funf (W)dodi,
We aim to find ¢ that optimizes an objective function, e.g.,
h(€) = / r(v)f(v, T)dv.

This is a Boltzmann equation constrained optimization.

Caflisch, R., Silantyev, D. and Yang, Y., 2021. Adjoint DSMC for nonlinear Boltzmann equation constrained optimization.
Journal of Computational Physics, 439, p110404. https://arxiv.org/pdf/2009.01363. pdf. 13
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Optimize then Discretize (OTD)



Lagrangian Multipliers

)= [ ndv+ [ s)((v.0) ~ folvie))dv

)2

I ]1
.
*I/o / B D a0 )t
J

3]

where (V) in J, is a Lagrange multiplier that enforces the initial condition for
any v € R3, and (v, t) in J; is a Lagrange multiplier that enforces the Boltzmann
equation (Eulerian verision of the forward problem).
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First-order necessary condition for optimality (KKT)

By — / / A+ = — f(vr)qdodvi= 0

6f(v t)

d)
5f(V T) (V T) ( ): 0,
6]‘((\5/],0) = —y(v,0) + k(v)= 0.

where v,y1,v" and ~; represent (v, t), v(va, t), v(v', t) and (v, t).

The gradient of the objective function w.r.t. the unknown ¢ is:
aJ
5 =~ [ Kolvi)e
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First-order necessary condition for optimality (KKT)

The continuous adjoint eqn., (appears in Cercignani book)

—0ry = [ (4(¥4) +9(V) = (v1) = 7(V)) f(v2)adordvs,
v(v,T) = —r(v).

de) = — / (v, 0)0cfo(V; )dv

We have devised a particle method for solving for ~, but it is not systematically
derived and it is very inefficient.
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Discretize then Optimize (DTO)



Recap: The Optimization Problem

{af Q(f.f),
F(0,0) = fo(vi ).

where we assume the Maxwellian collision kernel g(¢) = 1 does not have angle
dependence, and thus

aff-£) = [ [FORF) - Fedfv)dodvi

We aim to find ¢ that optimizes an objective function, e.g.,

1) = [ rfw. T,
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Discretization in v and t by DSMC (for Maxwellian gas with g =constant)

1. Initial Data.  Sample v, ; (fori=1,...,N) from fo(v; a)
2. For M = T/(At) time steps, at timestep k
2.1 Perform collisions.
Select Nc = gAtN/2 particle pairs (v, v ;,) for collisions and set
Vi = Vi = C(Vkji Vi,i,)
Vesis = Viiy = C(Vkijy Vi,i)-
2.2 Update the particles that do not collide in this time step.
Vit1,i = Vi,

3. At the final time ty = T, calculate the objective function [J; = § o r(vm,)-
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Optimize 7, Using the “Discretize Then Optimize” (DTO) Approach

Lagrangian multipliers are applied to enforce the DSMC equations

N
1
:NZ Vi) + Z'Yo: (Vo,i = Vo,i(@))
i=1
Jh Iz
1 M N
+N227k1 (Vi,i — V;(—17i)'
k=1 i=1

T3
where v, ; in 7, enforces the discrete initial condition for all N particles, and ~y
in J; enforces the particle collision rule.

Vi_,; represents the post-collision velocity of v, ; if it participates in the collision at the k-th

time interval. Otherwise, vj,_, ; = Vj_4 ;.
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Solve the Discrete Adjoint Equations: Adjoint DSMC Method

Represent the adjoint variables as

rk = {’717"‘771'7"‘ 77N}(tk)7
denoting the i-th adjoint variables in Ty as v, ; € R3.
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Solve the Discrete Adjoint Equations: Adjoint DSMC Method

Represent the adjoint variables as

rk = {’717"‘771'7"‘ 77N}(tk)7
denoting the i-th adjoint variables in Ty as v, ; € R3.

Starting with final-time condition v = —d,r(vg),
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Solve the Discrete Adjoint Equations: Adjoint DSMC Method

Represent the adjoint variables as
Tk = {7155 ¥ir -+ In k),
denoting the i-th adjoint variables in Ty as v, ; € R3.

Starting with final-time condition v = —d,r(vg),
solve backwards fork =M —1,...,2,1

ﬂYk,I — D ﬂYk-f—'l,l
Yk, Y41,y
in which

Ve Vii) { B(o, ovg) for g =constant

D= .. .
(Ve Vk.i,) B(o, ar) + additional angular terms otherwise.
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Computation of the Gradient using the Adjoint Variables

The adjoint variable is the velocity gradient of the original objective function:
Yk = aVk,,‘jl

inwhich 73 = 1 S0 r(ve).
Any gradient of [7; can now be computed (e.g., for the initial value problem) as
1 N
OcJh = N Z’Yo,i : 8£Vo,i(f)-
i=1
This computes the gradient for use in optimization.
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Numerical Comparison (Memory, Error, Speed)

We compute the gradient numerically after the forward DSMC simulations
solving the Boltzmann equation (N = 10°):

1. finite difference method; (0.38s for one parameter*)

2. adjoint DSMC method; (0.22 s)

3. particle method for the continuous adjoint eqn; (280 s)

4. direct discretization of the continuous adjoint egn. (overnight)**

*Computational costs for #2, #3, and #4 are independent of the size of the unknowns but untrue
for #1 — The beauty of the adjoint-state method.

“*This is a result of backward Euler scheme in time and Riemann sum for the RHS integral.
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Error vs. CPU Timing in Gradient Computation

Error in dm4x(t=2)/dTg vs. CPU timing
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Optimization Examples

Test 1: minimize t

relative value

Test 2: inverse data matching problem

relative value
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DSMC for General Collision Kernel g = g(|v — v4|,0)

« Direct use of DSMC is intractable
- Collision probability in time step At is gAt for each of N/2 particle pairs.
« Direct use of DSMC requires random decision for each pair
+ since g = q(|v; — v;,, 0) is different for each pair
+ Work per time step = O(N)
« Intractable since total work (over 1/At times steps) is O(N/At)!
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DSMC for General Collision Kernel g = g(|v — v4|,0)

« Direct use of DSMC is intractable
- Collision probability in time step At is gAt for each of N/2 particle pairs.
« Direct use of DSMC requires random decision for each pair
+ since g = q(|v; — v;,, 0) is different for each pair
+ Work per time step = O(N)
« Intractable since total work (over 1/At times steps) is O(N/At)!
- Solution: Apply rejection sampling.
+ Set ¥ = max(q(v; — vj,0))= “virtual collision” rate.
« For each particle pair:
+ No virtual collision with probability h, = 1 — X At.
« Virtual collision that is a real collision, with probability h, = gAt
« Virtual collision that is not real (rejection) with probability h; = (X — q)At
« No computation is required for particles that do not have virtual collisions.
« Just select (h. + h3)N = X AtN particles for virtual collisions
+ Work per time step = O(XAtN) .
- Tractable since total work is O(XN) . 25



Adjoint Equations for General Collision Kernel

For DSMC with rejection sampling, the adjoint equations become

(7'*7"') = B(og, o) <7k+1’_i> + (O, log hy)(r(vm) + r(Vm)) <1> :
Y., Y R+1,is !

The extra term 0y, log h; is the “score function”.
It comes from the commutator

O[] — Er[ov] = Er[(dy, log ;)]

E, is expectation over the rejection-sampling (with probabilities h4, h,, h3).
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Derivation of the Score Function

Avoiding the obstacle that rejection sampling is discontinuous:

« Partially discretize
« Discretize the velocities: N velocities v; fori=1,...,N
- Keep expectations, rather than sampling the random variables that determine

acceptance or rejection
« Then differentiate wrt the v;'s, as a step in optimizing
+ Rewrite the derivative as an expectation - this leads to the score function

Er[¢] = Oy Tihi¢ = ¥ (hidv¢ + ¢0,h;j) = Zih; (8ve + h;"(0vhi)9)
= E/[0y¢ + (Oylogh;)g].
« Then sample the random variables that determine acceptance or rejection,
as well as the choice of collision pairs and collision parameters

+ No discontinuities

« This again yields a single realization of DSMC
27



Accuracy of the Adjoint Method for Nonconstant q

nt=20, alpha1=1 . alphaz=2, dT=0.1, dt=0.1, nrun=100
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Accuracy of the Adjoint Method for Nonconstant q

Average error

nt=20, alpha1=1, alpha2=2, dT=0.1, dt=0.1, nrun=100
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« Adjoint for Boltzmann
« Discretize (i.e., sample) velocities and use DSMC
+ Formulate augmented Lagrangian with
- objective function, constraints and adjoint variables v
- Differentiate in v to get adjoint equations for ~
+ Solve DSMC forward in time; then adjoint equations backward in time,
« Obtain derivatives of objective function

- Rejection Sampling
« Needed for general collisions
- Differentiate the expectation (of rejection sampling), then sample
+ Leads to new term - score function - in adjoint equations

- Computationally efficient and accurate
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