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Optimization Example 1: Tokamak Divertor

Optimization of divertor shape based on an adjoint method for MHD equations, W. Dekeyser, et al.
Collisional e�ects may be significant near the divertor. 1



Optimization Example 2: Stellarator Electromagnetic Coils

Optimization of coil geometry based on an adjoint method for MHD equations, E. Paul, M. Landreman, et al.
Collisional e�ects may be significant near the plasma edge. 2



Main ideas of this talk

• Obstacle: Shape design requires optimization over many parameters ξ.
• Di�cult for direct optimization methods.

• Solution: A major advantage of the adjoint method is that it can
simultaneously optimize over many parameters.

• Obstacle: The adjoint of the Boltzmann equation for velocity density f is
comparable to the linearized Boltzmann equation.
• Computationally intractable.

• Solution: Discretize Boltzmann using DSMC, then compute adjoint relative to
the DSMC velocities v
• Computationally e�cient.

• Obstacle: DSMC may require rejection sampling, which is discontinuous in v
• The adjoint equations require di�erentiation.

• Solution: Di�erentiate the expectation (of rejection sampling), then sample
• This leads to a new term: the score function 7



Boltzmann Equation

Inclusion of collisional e�ects is through the Boltzmann equation for rarefied
gases (or the Landau-Fokker-Plank equation for plasmas)

∂f
∂t

+ v · ∇xf = Q (f , f )
f (0, x, v) = f0 on Ω

f = f eq(ρb,ub, Tb) on ∂Ω

where
Q(f , f ) =

∫
R3

∫
S2
q(v − v1, σ)

(
f (v′1)f (v′)− f (v1)f (v)

)
dσdv1,

v′ and v′1 are the velocities after collision between v and v1.

For simplicity, we will consider the spatially homogeneous Boltzmann equation,
without the term v · ∇xf .
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Binary Collisions

v1 v

v′1

v′
v1 v

pre-collision velocities

v′1 v′
post-collision velocities

Elastic collision preserves mass, momentum and energy. Assume particles have
equal mass, then

v1 + v = v′1 + v′

|v1|2 + |v|2 = |v′1|2 + |v′|2
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Elastic Binary Collision Formulas

The σ-representation:v′ = 1/2(v + v1) + 1/2|v − v1|σ

v′1 = 1/2(v + v1)− 1/2|v − v1|σ
, σ =

v′ − v′1
|v′ − v′1|

. (1)

σ ∈ S2 is the vector of collision angles. Also note that |v − v1|=|v′ − v′1| and
define α = v−v′

|v−v′| .

10



Collision Formulas in Matrix Form

We can then write the collision formulas as(
v′

v′1

)
= A(σ, α)

(
v
v1

)
,

(
v
v1

)
= B(σ, α)

(
v′

v′1

)
, where

A(σ, α) =
1
2

(
I+ σαT I− σαT

I− σαT I+ σαT

)
,

where I is the identity matrix in R3 and B = A> = A−1.
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The Collision Kernel

Di�erent types of rarefied gas have di�erent collision kernels:

q(v − v1, σ) = q̃(|v − v1|, θ), where cos θ = σ · α.

θ is the scattering angle. For the special case q = Cβ(θ)|v − v1|β

• β = 0: Maxwellian collision model. We also take Cβ to be a constant.
• β > 0: Hard Potential model
• β < 0: Soft Potential model
• β = −3: Coulomb Potential model
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Optimization Problem for Parameter ξ in Initial Data


∂f
∂t

= Q (f , f ) ,
f (0, v) = f0(v; ξ).

Q(f , f ) =

∫∫
q(v − v1, σ)(f (v′1)f (v′)− f (v1)f (v))dσdv1.

We aim to find ξ that optimizes an objective function, e.g.,

J1(ξ) =

∫
r(v)f (v, T)dv.

This is a Boltzmann equation constrained optimization.
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Optimize then Discretize (OTD)



Lagrangian Multipliers

J =

∫
r(v)f (v, T)dv

J1

+

∫
κ(v)(f (v,0)− f0(v; ξ))dv

J2

+

∫ T

0

∫
γ(v, t)(∂tf (v, t)− Q(f , f ))dvdt

J3

where κ(v) in J2 is a Lagrange multiplier that enforces the initial condition for
any v ∈ R3, and γ(v, t) in J3 is a Lagrange multiplier that enforces the Boltzmann
equation (Eulerian verision of the forward problem).
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First-order necessary condition for optimality (KKT)

δJ
δf (v, t)

= −∂tγ −
∫∫

(γ′1 + γ′ − γ1 − γ)f (v1)qdσdv1= 0,

δJ
δf (v, T)

= γ(v, T) + r(v)= 0,

δJ
δf (v,0)

= −γ(v,0) + κ(v)= 0.

where γ, γ1, γ
′ and γ′1 represent γ(v, t), γ(v1, t), γ(v′, t) and γ(v′1, t).

The gradient of the objective function w.r.t. the unknown ξ is:
∂J
∂ξ

= −
∫
κ(v)∂ξf0(v; ξ)dv
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First-order necessary condition for optimality (KKT)

The continuous adjoint eqn., (appears in Cercignani book)

{
−∂tγ =

∫∫
(γ(v′1) + γ(v′)− γ(v1)− γ(v)) f (v1)qdσdv1,

γ(v, T) = −r(v).

∂ξJ = −
∫
γ(v,0)∂ξf0(v; ξ)dv

We have devised a particle method for solving for γ, but it is not systematically
derived and it is very ine�cient.
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Discretize then Optimize (DTO)



Recap: The Optimization Problem


∂f
∂t

= Q (f , f ) ,
f (0, v) = f0(v; ξ).

where we assume the Maxwellian collision kernel q(σ) = 1 does not have angle
dependence, and thus

Q(f , f ) =

∫∫
(f (v′1)f (v′)− f (v1)f (v))dσdv1.

We aim to find ξ that optimizes an objective function, e.g.,

J1(ξ) =

∫
r(v)f (v, T)dv.
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Discretization in v and t by DSMC (for Maxwellian gas with q =constant)

1. Initial Data. Sample v0,i (for i = 1, . . . ,N) from f0(v;α)

2. For M = T/(∆t) time steps, at timestep k

2.1 Perform collisions.

Select Nc = q∆tN/2 particle pairs (vk,i, vk,i1) for collisions and set

vk+1,i = v′k,i = C(vk,i vk,i1)

vk+1,i1 = v′k,i1 = C(vk,i1 vk,i).

2.2 Update the particles that do not collide in this time step.

vk+1,i = vk,i

3. At the final time tM = T, calculate the objective function J1 = 1
N
∑N

i=1 r(vM,i).
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Optimize J1 Using the “Discretize Then Optimize” (DTO) Approach

Lagrangian multipliers are applied to enforce the DSMC equations

J =
1
N

N∑
i=1

r(vM,i)

J1

+
1
N

N∑
i=1

γ0,i · (v0,i − v0,i(α))

J2

+
1
N

M∑
k=1

N∑
i=1

γk,i · (vk,i − v′k−1,i)

J3

.

where γI,i in J2 enforces the discrete initial condition for all N particles, and γk,i
in J3 enforces the particle collision rule.

v′k−1,i represents the post-collision velocity of vk−1,i if it participates in the collision at the k-th
time interval. Otherwise, v′k−1,i = vk−1,i.
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Solve the Discrete Adjoint Equations: Adjoint DSMC Method

Represent the adjoint variables as

Γk = {γ1, . . . ,γ i, . . . ,γN}(tk),

denoting the i-th adjoint variables in Γk as γk,i ∈ R3.

Starting with final-time condition γF = −∂vr(vF),
solve backwards for k = M− 1, . . . , 2, 1(

γk,i
γk,i1

)
= D

(
γk+1,i
γk+1,i1

)
,

in which

D =
∂(v′k,i, v

′
k,i1)

∂(vk,i, vk,i1)
=

{
B(σk, αk) for q =constant
B(σk, αk) + additional angular terms otherwise.
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Computation of the Gradient using the Adjoint Variables

The adjoint variable is the velocity gradient of the original objective function:

γk,i = ∂vk,iJ1

in which J1 = 1
N
∑N

i=1 r(vF,i).

Any gradient of J1 can now be computed (e.g., for the initial value problem) as

∂ξJ1 = − 1
N

N∑
i=1

γ0,i · ∂ξv0,i(ξ).

This computes the gradient for use in optimization.
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Numerical Comparison (Memory, Error, Speed)

We compute the gradient numerically after the forward DSMC simulations
solving the Boltzmann equation (N = 106):

1. finite di�erence method; (0.38s for one parameter∗)
2. adjoint DSMC method; (0.22 s)
3. particle method for the continuous adjoint eqn; (280 s)
4. direct discretization of the continuous adjoint eqn. (overnight)∗∗

∗Computational costs for #2, #3, and #4 are independent of the size of the unknowns but untrue
for #1 — The beauty of the adjoint-state method.
∗∗This is a result of backward Euler scheme in time and Riemann sum for the RHS integral.
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Error vs. CPU Timing in Gradient Computation
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Optimization Examples

Test 1: minimize the di�erence between 2nd and 4th moments at final time
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Test 2: inverse data matching problem
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DSMC for General Collision Kernel q = q(|v − v1|, θ)

• Direct use of DSMC is intractable
• Collision probability in time step ∆t is q∆t for each of N/2 particle pairs.
• Direct use of DSMC requires random decision for each pair

• since q = q(|vi − vi1 , θ) is di�erent for each pair
• Work per time step = O(N)

• Intractable since total work (over 1/∆t times steps) is O(N/∆t)!

• Solution: Apply rejection sampling.
• Set Σ = max(q(vi − vj, θ))= “virtual collision” rate.
• For each particle pair:

• No virtual collision with probability h1 = 1− Σ∆t.
• Virtual collision that is a real collision, with probability h2 = q∆t
• Virtual collision that is not real (rejection) with probability h3 = (Σ− q)∆t

• No computation is required for particles that do not have virtual collisions.
• Just select (h2 + h3)N = Σ∆tN particles for virtual collisions
• Work per time step = O(Σ∆tN) .

• Tractable since total work is O(ΣN) .
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Adjoint Equations for General Collision Kernel

For DSMC with rejection sampling, the adjoint equations become(
γk,i
γk,i1

)
= B(σk, αk)

(
γk+1,i
γk+1,i1

)
+ (∂vk log hj)(r(vM) + r(ṽM))

(
1
1

)
.

The extra term ∂vk log hj is the “score function”.
It comes from the commutator

∂vEr[·]− Er[∂v·] = Er[(∂vk log hj)·].

Er is expectation over the rejection-sampling (with probabilities h1,h2,h3).
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Derivation of the Score Function

Avoiding the obstacle that rejection sampling is discontinuous:
• Partially discretize

• Discretize the velocities: N velocities vi for i = 1, . . . ,N
• Keep expectations, rather than sampling the random variables that determine

acceptance or rejection
• Then di�erentiate wrt the vi’s, as a step in optimizing
• Rewrite the derivative as an expectation - this leads to the score function

∂vEr[φ] = ∂vΣihiφ = Σi (hi∂vφ+ φ∂vhi) = Σihi
(
∂vφ+ h−1

i (∂vhi)φ
)

= Er[∂vφ+ (∂vloghi)φ].

• Then sample the random variables that determine acceptance or rejection,
as well as the choice of collision pairs and collision parameters
• No discontinuities

• This again yields a single realization of DSMC
27



Accuracy of the Adjoint Method for Nonconstant q

Statistical error 28



Accuracy of the Adjoint Method for Nonconstant q

Average error 29



Conclusions

• Adjoint for Boltzmann
• Discretize (i.e., sample) velocities and use DSMC
• Formulate augmented Lagrangian with

• objective function, constraints and adjoint variables γ
• Di�erentiate in v to get adjoint equations for γ
• Solve DSMC forward in time; then adjoint equations backward in time,
• Obtain derivatives of objective function

• Rejection Sampling
• Needed for general collisions
• Di�erentiate the expectation (of rejection sampling), then sample
• Leads to new term – score function – in adjoint equations

• Computationally e�cient and accurate
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