An Adjoint Method for the Nonlinear Boltzmann Equation

Russ Caflisch¹

¹Director, Courant Institute, NYU

This is joint work with Yunan Yang (ETH Zürich) and Denis Silantyev (U Colorado, Colorado

Springs).

Optimization Example 1: Tokamak Divertor

Optimization of divertor shape based on an adjoint method for MHD equations, W. Dekeyser, et al. Collisional effects may be significant near the divertor.

Optimization Example 2: Stellarator Electromagnetic Coils

Optimization of coil geometry based on an adjoint method for MHD equations, E. Paul, M. Landreman, et al. Collisional effects may be significant near the plasma edge.

Main ideas of this talk

- **Obstacle**: Shape design requires optimization over many parameters ξ .
 - Difficult for direct optimization methods.
- **Solution**: A major advantage of the adjoint method is that it can simultaneously optimize over many parameters.
- **Obstacle**: The adjoint of the Boltzmann equation for velocity density *f* is comparable to the linearized Boltzmann equation.
 - Computationally intractable.
- **Solution**: Discretize Boltzmann using DSMC, then compute adjoint relative to the DSMC velocities *v*
 - Computationally efficient.
- **Obstacle**: DSMC may require rejection sampling, which is discontinuous in v
 - The adjoint equations require differentiation.
- Solution: Differentiate the expectation (of rejection sampling), then sample
 - This leads to a new term: the score function

Inclusion of collisional effects is through the Boltzmann equation for rarefied gases (or the Landau-Fokker-Plank equation for plasmas)

$$\begin{cases} \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f, f) \\ f(\mathbf{0}, \mathbf{x}, \mathbf{v}) = f_{\mathbf{0}} \text{ on } \Omega \\ f = f^{eq}(\rho_b, \mathbf{u}_b, T_b) \text{ on } \partial\Omega \end{cases}$$

where

$$Q(f,f) = \int_{\mathbb{R}^3} \int_{\mathcal{S}^2} q(\mathbf{v} - \mathbf{v}_1, \sigma) \left(f(\mathbf{v}_1') f(\mathbf{v}') - f(\mathbf{v}_1) f(\mathbf{v}) \right) d\sigma d\mathbf{v}_1,$$

v' and v'_1 are the velocities after collision between v and v_1 .

For simplicity, we will consider the spatially homogeneous Boltzmann equation, without the term $v \cdot \nabla_x f$.

Binary Collisions

Elastic collision preserves <u>mass</u>, <u>momentum</u> and <u>energy</u>. Assume particles have equal mass, then

$$\begin{array}{rcl} v_1 + v &=& v_1' + v' \\ |v_1|^2 + |v|^2 &=& |v_1'|^2 + |v'|^2 \end{array}$$

The $\sigma\text{-representation:}$

$$\begin{cases} \mathbf{v}' = 1/2(\mathbf{v} + \mathbf{v}_1) + 1/2|\mathbf{v} - \mathbf{v}_1|\sigma\\ \mathbf{v}'_1 = 1/2(\mathbf{v} + \mathbf{v}_1) - 1/2|\mathbf{v} - \mathbf{v}_1|\sigma \end{cases}, \quad \sigma = \frac{\mathbf{v}' - \mathbf{v}'_1}{|\mathbf{v}' - \mathbf{v}'_1|}. \tag{1}$$

 $\sigma \in S^2$ is the vector of collision angles. Also note that $|v - v_1| = |v' - v'_1|$ and define $\alpha = \frac{v - v'}{|v - v'|}$.

We can then write the collision formulas as

$$\begin{pmatrix} \mathbf{v}' \\ \mathbf{v}'_1 \end{pmatrix} = \mathbf{A}(\sigma, \alpha) \begin{pmatrix} \mathbf{v} \\ \mathbf{v}_1 \end{pmatrix}, \quad \begin{pmatrix} \mathbf{v} \\ \mathbf{v}_1 \end{pmatrix} = \mathbf{B}(\sigma, \alpha) \begin{pmatrix} \mathbf{v}' \\ \mathbf{v}'_1 \end{pmatrix}, \quad \text{where}$$
$$\mathbf{A}(\sigma, \alpha) = \frac{1}{2} \begin{pmatrix} \mathbf{I} + \sigma \alpha^T & \mathbf{I} - \sigma \alpha^T \\ \mathbf{I} - \sigma \alpha^T & \mathbf{I} + \sigma \alpha^T \end{pmatrix},$$

where *I* is the identity matrix in \mathbb{R}^3 and $B = A^{\top} = A^{-1}$.

Different types of rarefied gas have different collision kernels:

$$q(\mathbf{v} - \mathbf{v}_1, \sigma) = \tilde{q}(|\mathbf{v} - \mathbf{v}_1|, \theta), \text{ where } \cos \theta = \sigma \cdot \alpha.$$

heta is the scattering angle. For the special case $q = C_{eta}(heta)|\mathbf{v}-\mathbf{v}_1|^{eta}$

- $\beta = 0$: Maxwellian collision model. We also take C_{β} to be a constant.
- + $\beta > 0$: Hard Potential model
- + $\beta < 0$: Soft Potential model
- $\beta = -3$: Coulomb Potential model

Optimization Problem for Parameter ξ in Initial Data

$$\begin{cases} \frac{\partial f}{\partial t} = Q(f,f),\\ f(o,v) = f_0(v;\boldsymbol{\xi}). \end{cases}$$
$$Q(f,f) = \iint q(v-v_1,\sigma)(f(v_1')f(v') - f(v_1)f(v))d\sigma dv_1. \end{cases}$$

We aim to find $\boldsymbol{\xi}$ that optimizes an objective function, e.g.,

$$J_1(\boldsymbol{\xi}) = \int r(\mathbf{v}) f(\mathbf{v}, T) d\mathbf{v}$$

This is a Boltzmann equation **constrained** optimization.

Caflisch, R., Silantyev, D. and Yang, Y., 2021. Adjoint DSMC for nonlinear Boltzmann equation constrained optimization. Journal of Computational Physics, 439, p.110404. https://arxiv.org/pdf/2009.01363.pdf.

13

Optimize then Discretize (OTD)

$$J = \int r(\mathbf{v})f(\mathbf{v},T)d\mathbf{v} + \int \kappa(\mathbf{v})(f(\mathbf{v},0) - f_0(\mathbf{v};\xi))d\mathbf{v}$$
$$+ \int_0^T \int \gamma(\mathbf{v},t)(\partial_t f(\mathbf{v},t) - Q(f,f))d\mathbf{v}dt$$
$$J_3$$

where $\kappa(\mathbf{v})$ in J_2 is a Lagrange multiplier that enforces the initial condition for any $\mathbf{v} \in \mathbb{R}^3$, and $\gamma(\mathbf{v}, t)$ in J_3 is a Lagrange multiplier that enforces the Boltzmann equation (Eulerian verision of the forward problem).

First-order necessary condition for optimality (KKT)

$$\frac{\delta J}{\delta f(\mathbf{v}, \mathbf{t})} = -\partial_t \gamma - \iint (\gamma'_1 + \gamma' - \gamma_1 - \gamma) f(\mathbf{v}_1) q d\sigma d\mathbf{v}_1 = \mathbf{0}$$
$$\frac{\delta J}{\delta f(\mathbf{v}, \mathbf{T})} = \gamma(\mathbf{v}, \mathbf{T}) + \mathbf{r}(\mathbf{v}) = \mathbf{0},$$
$$\frac{\delta J}{\delta f(\mathbf{v}, \mathbf{0})} = -\gamma(\mathbf{v}, \mathbf{0}) + \kappa(\mathbf{v}) = \mathbf{0}.$$

where $\gamma, \gamma_1, \gamma'$ and γ'_1 represent $\gamma(\mathbf{v}, t), \gamma(\mathbf{v}_1, t), \gamma(\mathbf{v}', t)$ and $\gamma(\mathbf{v}'_1, t)$.

The gradient of the objective function w.r.t. the unknown ξ is:

$$\frac{\partial J}{\partial \xi} = -\int \kappa(\mathbf{v}) \partial_{\xi} f_{\mathsf{O}}(\mathbf{v};\xi) d\mathbf{v}$$

The continuous adjoint eqn., (appears in Cercignani book)

$$\begin{cases} -\partial_t \gamma = \iint (\gamma(\mathbf{v}_1') + \gamma(\mathbf{v}') - \gamma(\mathbf{v}_1) - \gamma(\mathbf{v})) f(\mathbf{v}_1) q d\sigma d\mathbf{v}_1, \\ \gamma(\mathbf{v}, T) = -\mathbf{r}(\mathbf{v}). \end{cases}$$

$$\partial_{\xi} \mathbf{J} = -\int \gamma(\mathbf{v}, \mathbf{O}) \partial_{\xi} f_{\mathbf{O}}(\mathbf{v}; \xi) d\mathbf{v}$$

We have devised a particle method for solving for γ , but it is not systematically derived and it is very inefficient.

Discretize then Optimize (DTO)

Recap: The Optimization Problem

$$\begin{cases} \frac{\partial f}{\partial t} = Q(f, f), \\ f(o, v) = f_o(v; \xi) \end{cases}$$

where we assume the Maxwellian collision kernel $q(\sigma) = 1$ does not have angle dependence, and thus

$$Q(f,f) = \iint (f(\mathbf{v}_1')f(\mathbf{v}') - f(\mathbf{v}_1)f(\mathbf{v}))d\sigma d\mathbf{v}_1.$$

We aim to find ξ that optimizes an objective function, e.g.,

$$J_1(\boldsymbol{\xi}) = \int r(\mathbf{v})f(\mathbf{v},T)d\mathbf{v}.$$

Discretization in v and t by DSMC (for Maxwellian gas with q =constant)

- **1.** Initial Data. Sample $v_{0,i}$ (for i = 1, ..., N) from $f_0(v; \alpha)$
- 2. For $M = T/(\Delta t)$ time steps, at timestep k
 - 2.1 Perform collisions.

Select $N_c = q \Delta t N/2$ particle pairs $(v_{k,i}, v_{k,i_1})$ for collisions and set

$$\mathbf{v}_{k+1,i} = \mathbf{v}'_{k,i} = C(\mathbf{v}_{k,i} \, \mathbf{v}_{k,i_1})$$

 $\mathbf{v}_{k+1,i_1} = \mathbf{v}'_{k,i_1} = C(\mathbf{v}_{k,i_1} \, \mathbf{v}_{k,i_1}).$

2.2 Update the particles that do not collide in this time step.

$$\mathbf{v}_{k+1,i} = \mathbf{v}_{k,i}$$

3. At the final time $t_M = T$, calculate the objective function $\mathcal{J}_1 = \frac{1}{N} \sum_{i=1}^{N} r(v_{M,i})$.

Optimize \mathcal{J}_1 Using the "Discretize Then Optimize" (DTO) Approach

Lagrangian multipliers are applied to enforce the DSMC equations

$$\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} r(\mathbf{v}_{M,i}) + \frac{1}{N} \sum_{i=1}^{N} \gamma_{0,i} \cdot (\mathbf{v}_{0,i} - \mathbf{v}_{0,i}(\alpha))$$
$$+ \frac{1}{N} \sum_{k=1}^{M} \sum_{i=1}^{N} \gamma_{k,i} \cdot (\mathbf{v}_{k,i} - \mathbf{v}'_{k-1,i}).$$
$$\mathcal{J}_{3}$$

where $\gamma_{I,i}$ in \mathcal{J}_2 enforces the *discrete* initial condition for all *N* particles, and $\gamma_{k,i}$ in \mathcal{J}_3 enforces the particle collision rule.

 $v'_{k-1,i}$ represents the post-collision velocity of $v_{k-1,i}$ if it participates in the collision at the k-th time interval. Otherwise, $v'_{k-1,i} = v_{k-1,i}$.

Solve the Discrete Adjoint Equations: Adjoint DSMC Method

Represent the adjoint variables as

$$\Gamma_k = \{\gamma_1, \ldots, \gamma_i, \ldots, \gamma_N\}(t_k),$$

denoting the *i*-th adjoint variables in Γ_k as $\gamma_{k,i} \in \mathbb{R}^3$.

Solve the Discrete Adjoint Equations: Adjoint DSMC Method

Represent the adjoint variables as

$$\Gamma_k = \{\gamma_1, \ldots, \gamma_i, \ldots, \gamma_N\}(t_k),$$

denoting the *i*-th adjoint variables in Γ_k as $\gamma_{k,i} \in \mathbb{R}^3$.

Starting with final-time condition $\gamma_F = -\partial_V r(v_F)$,

Solve the Discrete Adjoint Equations: Adjoint DSMC Method

Represent the adjoint variables as

$$\Gamma_k = \{\gamma_1, \ldots, \gamma_i, \ldots, \gamma_N\}(t_k),$$

denoting the *i*-th adjoint variables in Γ_k as $\gamma_{k,i} \in \mathbb{R}^3$.

Starting with final-time condition $\gamma_F = -\partial_V r(v_F)$, solve backwards for k = M - 1, ..., 2, 1

$$\begin{pmatrix} \gamma_{k,i} \\ \gamma_{k,i_1} \end{pmatrix} = \mathsf{D} \begin{pmatrix} \gamma_{k+1,i} \\ \gamma_{k+1,i_1} \end{pmatrix},$$

in which

$$D = \frac{\partial(\mathbf{v}'_{k,i}, \mathbf{v}'_{k,i_1})}{\partial(\mathbf{v}_{k,i}, \mathbf{v}_{k,i_1})} = \begin{cases} B(\sigma_k, \alpha_k) & \text{for } q = \text{constant} \\ B(\sigma_k, \alpha_k) + \text{additional angular terms} & \text{otherwise.} \end{cases}$$

The adjoint variable is the velocity gradient of the original objective function:

$${m \gamma}_{k,i} = \partial_{{m v}_{k,i}} {\mathcal J}_1$$

in which $\mathcal{J}_1 = \frac{1}{N} \sum_{i=1}^{N} r(v_{F,i})$.

Any gradient of \mathcal{J}_1 can now be computed (e.g., for the initial value problem) as

$$\partial_{\xi} \mathcal{J}_{1} = -\frac{1}{N} \sum_{i=1}^{N} \gamma_{\mathsf{o},i} \cdot \partial_{\xi} \mathsf{v}_{\mathsf{o},i}(\xi).$$

This computes the gradient for use in optimization.

We compute the gradient numerically after the forward DSMC simulations solving the Boltzmann equation ($N = 10^6$):

- 1. finite difference method; (0.38s for one parameter*)
- 2. adjoint DSMC method; (0.22 s)
- 3. particle method for the continuous adjoint eqn; (280 s)
- 4. direct discretization of the continuous adjoint eqn. (overnight)**

*Computational costs for #2, #3, and #4 are independent of the size of the unknowns but untrue for #1 — The beauty of the adjoint-state method.

**This is a result of backward Euler scheme in time and Riemann sum for the RHS integral.

Error vs. CPU Timing in Gradient Computation

Caflisch, R., Silantyev, D. and Yang, Y., JCP 2021. https://arxiv.org/pdf/2009.01363.pdf.

Optimization Examples

Test 1: minimize the difference between 2nd and 4th moments at final time

Test 2: inverse data matching problem

Caflisch, R., Silantyev, D. and Yang, Y., JCP 2021. https://arxiv.org/pdf/2009.01363.pdf.

DSMC for General Collision Kernel $q = q(|v - v_1|, \theta)$

- Direct use of DSMC is intractable
 - Collision probability in time step Δt is $q\Delta t$ for each of N/2 particle pairs.
 - Direct use of DSMC requires random decision for each pair
 - since $q = q(|v_i v_{i_1}, \theta)$ is different for each pair
 - Work per time step = O(N)
 - Intractable since total work (over $1/\Delta t$ times steps) is $O(N/\Delta t)$!

DSMC for General Collision Kernel $q = q(|v - v_1|, \theta)$

- Direct use of DSMC is intractable
 - Collision probability in time step Δt is $q\Delta t$ for each of N/2 particle pairs.
 - Direct use of DSMC requires random decision for each pair
 - since $q = q(|v_i v_{i_1}, \theta)$ is different for each pair
 - Work per time step = O(N)
 - Intractable since total work (over $1/\Delta t$ times steps) is $O(N/\Delta t)$!
- Solution: Apply rejection sampling.
 - Set $\Sigma = \max(q(v_i v_j, \theta))$ = "virtual collision" rate.
 - For each particle pair:
 - No virtual collision with probability $h_1 = 1 \Sigma \Delta t$.
 - Virtual collision that is a real collision, with probability $h_2 = q \Delta t$
 - Virtual collision that is not real (rejection) with probability $h_3 = (\Sigma q)\Delta t$
 - No computation is required for particles that do not have virtual collisions.
 - Just select $(h_2 + h_3)N = \Sigma \Delta tN$ particles for virtual collisions
 - Work per time step = $O(\Sigma \Delta t N)$.
 - Tractable since total work is $O(\Sigma N)$.

For DSMC with rejection sampling, the adjoint equations become

$$\begin{pmatrix} \gamma_{k,i} \\ \gamma_{k,i_1} \end{pmatrix} = \mathsf{B}(\sigma_k,\alpha_k) \begin{pmatrix} \gamma_{k+1,i} \\ \gamma_{k+1,i_1} \end{pmatrix} + (\partial_{\mathsf{v}_k} \log h_j)(\mathsf{r}(\mathsf{v}_{\mathsf{M}}) + \mathsf{r}(\tilde{\mathsf{v}}_{\mathsf{M}})) \begin{pmatrix} \mathsf{1} \\ \mathsf{1} \end{pmatrix}.$$

The extra term $\partial_{v_k} \log h_j$ is the "score function". It comes from the commutator

$$\partial_{\mathbf{v}} E_r[\cdot] - E_r[\partial_{\mathbf{v}}\cdot] = E_r[(\partial_{\mathbf{v}_k} \log h_j)\cdot].$$

 E_r is expectation over the rejection-sampling (with probabilities h_1, h_2, h_3).

Derivation of the Score Function

Avoiding the obstacle that rejection sampling is discontinuous:

- Partially discretize
 - Discretize the velocities: N velocities v_i for i = 1, ..., N
 - Keep expectations, rather than sampling the random variables that determine acceptance or rejection
 - Then differentiate wrt the v_i 's, as a step in optimizing
 - Rewrite the derivative as an expectation this leads to the score function

$$\partial_{\mathbf{v}} \mathbf{E}_{\mathbf{r}}[\phi] = \partial_{\mathbf{v}} \Sigma_{i} h_{i} \phi = \Sigma_{i} \left(h_{i} \partial_{\mathbf{v}} \phi + \phi \partial_{\mathbf{v}} h_{i} \right) = \Sigma_{i} h_{i} \left(\partial_{\mathbf{v}} \phi + h_{i}^{-1} (\partial_{\mathbf{v}} h_{i}) \phi \right)$$
$$= \mathbf{E}_{\mathbf{r}}[\partial_{\mathbf{v}} \phi + (\partial_{\mathbf{v}} \log h_{i}) \phi].$$

- Then sample the random variables that determine acceptance or rejection, as well as the choice of collision pairs and collision parameters
 - No discontinuities
- This again yields a single realization of DSMC

Accuracy of the Adjoint Method for Nonconstant q

Statistical error

Accuracy of the Adjoint Method for Nonconstant q

Average error

Conclusions

• Adjoint for Boltzmann

- Discretize (i.e., sample) velocities and use DSMC
- Formulate augmented Lagrangian with
 - + objective function, constraints and adjoint variables γ
- Differentiate in ${\it v}$ to get adjoint equations for γ
- Solve DSMC forward in time; then adjoint equations backward in time,
- · Obtain derivatives of objective function

• Rejection Sampling

- Needed for general collisions
- Differentiate the expectation (of rejection sampling), then sample
- Leads to new term score function in adjoint equations

Computationally efficient and accurate

This work is partially supported by NSF DMS-1913129, and U.S. Department of Energy under Award Number DE-FG02-86ER53223.

