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Motivations

Many complex phenomena in science and engineering are modeled
by PDEs, which are subject to specific boundary and initial
conditions.
Accurately solving these PDEs is crucial for simulating real-world
phenomena, ranging from fluid flows and turbulent combustion to
entropy production and population dynamics.
Traditional mesh-based methods, such as finite element methods and
spectral methods often encounter significant challenges when solving
PDEs defined in high-dimensional spaces or with near singular
solutions.
In contrast, particle-based numerical methods that bypass the need
for traditional mesh generation provide a promising solution to
address these challenges.
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Passive tracer models and effective diffusivities

Consider a passive tracer model,

dX(t) = v(t,X)dt + σdw(t), X ∈ Rd, (1)

where v is some spatial periodic field, σ > 0 is the molecular
diffusivity, and {w(t)}t≥0 is a standard Brownian motion (BM).
Under certain conditions, the long-time larse-scale of X(t) behaves
like a BM, i.e., X(t)√

2t
→ N(0,DE), DE ∈ Rd×d is called the effective

diffusivity matrix.
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Eulerian approach to compute DE

By homogenization theory, effective diffusion happens when v is
mean zero and divergence-free.
Let χ be solution of cell problem,

Lχ = −v(y), y ∈ Td, (2)

where L := (v · ∇x + D0∆x) is the generator of X, D0 = σ2

2 is the
elliptic coefficient. Then,

DE = D0I +
〈
v ⊗ χ

〉
Td (3)

Numerically, if d is 3 or more and D0 is 10−3 or smaller, χ will develop
sharp gradients, which brings difficulties to mesh-based numerical
methods.
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Particle methods to compute DE

We can integrate along the particle path and calculate the covariance
matrix of particles directly,

DE
ij = lim

t→∞

〈(
xi(t)− xi(0))(xj(t)− xj(0)

)〉
2t

, 1 ≤ i, j ≤ d. (4)

We developed structure-preserving schemes for long-time integration
and obtained uniform-in-time error analysis.

Theorem 1

Let x1
n, n = 0, 1, .... be the first component of the numerical solution

and ∆t denote the time step. We have the convergence estimate

lim
n→∞

E(x1
n)

2

2n∆t
= DE

11 +O(∆t), (5)

where the constant in O(∆t) may depend on the regularity of v and
the constant σ but independent of T.
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Convection-enhanced diffusion
In ABC (Arnold–Beltrami– Childress) flow,
v = (sin z + cos y, sin x + cos z, sin y + cos x), and in Kolmogorov flow,
v = (sin z, sin x, sin y).
The calculation of effective diffusivities is new, especially in the 3D
chaotic and convection-dominated flows.
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Figure 1: Effective diffusivities in 3D chaotic flows. × is the result of
conventional Euler-Maruyama method.
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RDA equation with KPP nonlinearity
Front propagation in complex fluid flows arises in many scientific
areas such as turbulent combustion, chemical kinetics, biology, and
transport in porous media.
A fundamental problem is to analyze and compute large-scale front
speeds in complex flows.
An extensively studied model problem is the reaction diffusion
advection (RDA) equation with Kolmogorov-Petrovsky-Piskunov
(KPP) nonlinearity.
To be specific, the KPP equation is

ut = κ∆xu + (v · ∇x)u + τ−1f (u), t ∈ R+, x = (x1, ..., xd)
T ∈ Rd,

(6)

where κ is diffusion constant, τ is the time scale of reaction rate, v is
an incompressible velocity field (its precise definition will be
discussed later), u is the concentration of reactant or population, and
the KPP reaction term f (u) = u(1 − u) satisfying f (u) ≤ uf ′(0).
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Computing principal eigenvalues
If the velocity field v = v(x) in the KPP equation (6) is
time-independent, the minimal front speed in direction e is given by
the variational formula: c∗(e) = infλ>0 µ(λ)/λ, where µ(λ) is the
principal eigenvalue of the elliptic operator

Aλ
1 Φ ≡ κ∆xΦ+ (−2κλe + v) · ∇xΦ+

(
κλ2 − λv · e + τ−1f ′(0)

)
Φ = µ(λ)Φ.

(7)

If v = v(t,x) in the KPP equation (6) is periodic in time t, then the
variational formula c∗(e) = infλ>0 µ(λ)/λ still holds, where µ(λ) is the
principal eigenvalue of the time-periodic parabolic operator

Aλ
2 Φ ≡ κ∆xΦ+ (−2κλe + v) · ∇xΦ+

(
κλ2 − λv · e + τ−1f ′(0)

)
Φ− Φt = µ(λ)Φ,

(8)

However, when the magnitude of the velocity field is large (the
problem becomes advection-dominated) and/or the dimension of
spatial variables is big (e.g. d = 3), it is extremely expensive to
compute KPP front speeds by using the FEM.
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Interacting particle methods (IPMs)

We develop interacting particle methods to compute KPP front
speeds via the Feynman–Kac formula.
We obtained accurate principal eigenvalues by studying the
convergence of the Feynman–Kac semigroup associated with the
SDE system and the potential from the operator A.
We also obtained error estimates of the proposed IPMs in computing
principal eigenvalues.
In the literature, the relation between KPP front speed and effective
diffusivity, i.e., c∗(A) = O(

√
DE(A)) is proved for the 2D steady

cellular flow, where A is the strength of the flows.
Our numerical result shows that this relation is still true for
Kolmogorov flow.
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Relation of KPP front speeds and effective diffusivity
Figure 2 shows the numerical results of c̃∗(σ) in the 2D steady
cellular flow obtained by our method. From the numerical results, we
compute regression and obtain c̃∗(σ) = O(σ0.74), which agrees with
the theoretical result c∗(A) = O(

√
DE(A)), where A = 1/σ.

Numerical results of c̃∗(σ) in 3D Kolmogorov flow. The fitted slope is
≈ 0.43, which also indiates that c∗(A) = O(

√
DE(A)) is true.
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Figure 2: Numerical results of c̃∗(σ) in different flows.
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Parabolic-Parabolic Keller-Segel Chemotaxis Systems
We consider the parabolic-parabolic (fully parabolic) KS system of
the form:

ρt = ∇ · (µ∇ρ− χρ∇c),

ϵ ct = ∆ c − k2 c + ρ, (9)

where χ, µ (ϵ, k) are positive (non-negative) constants.
The model is called elliptic if ϵ = 0 (when c evolves rapidly to a local
equilibrium), and parabolic if ϵ > 0.
The ρ is the density of active particles (bacteria), and c is the
concentration of chemo-attractant (e.g. food).
Several numerical methods, including finite-volume methods and
spectral methods have been developed for KS systems to date.
However, to the best of our knowledge, these numerical methods are
tailored for 2D cases.
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A stochastic interacting particle-field (SIPF) algorithm

We propose a stochastic interacting particle-field (SIPF) algorithm for
the fully parabolic KS system (9).
Our method takes into account the coupled stochastic particle
evolution (density ρ) and the accompanying field (concentration c) in
the system and allows for a self-adaptive simulation of focusing and
potentially singular behavior.
In the SIPF algorithm, we represent the active particle density ρ by
empirical particles and the concentration field c is discretized by a
spectral method. This is possible since the field c is smoother than
density ρ.
We demonstrate the effectiveness of our method through numerical
experiments in three space dimensions (3D), which have not been
systematically computed and benchmarked to the best of our
knowledge.
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Numerical results for 3D Euler equations

It is worth noting that the pseudo-spectral methods were employed to
compute the nearly singular solutions of the 3D Euler equations by
Profs. Hou and Li.
Subsequently, the finite-time blowup of the 3D axisymmetric Euler
equations was computed using the adaptive moving mesh method by
Prof. Hou’s group.
These methods represent the cutting edge in the computation of
nearly singular solutions of the 3D Euler equations.
Nevertheless, we also point out that the implementation of
pseudo-spectral methods for 3D problems demands substantial
computational resources, while the adaptive moving mesh method
requires sophisticated design and advanced programming skills.
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Implementation of the SIPF algorithm

Since we are interested in the spatially localized aggregation
behavior, we restrict the system (9) in a large domain
Ω = [−L/2,L/2]d and assume Dirichlet boundary condition for
particle density ρ and Neumann boundary condition for chemical
concentration c.
As a discrete algorithm, we assume the temporal domain [0,T] is
partitioned by {tn}n=0:nT with t0 = 0 and tnT = T.
We approximate the density ρ by particles, i.e.

ρ(t) ≈ M0

P

P∑
j=1

δ(x − Xp
t ), P ≫ 1, (10)

where M0 is the conserved total mass (integral of ρ).
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Implementation of the SIPF algorithm (cont.)

For chemical concentration c, we approximate by Fourier basis,
namely, c(x, t) has an series representation∑

j,m,l∈H

αt;j,m,l exp(i2πj x1/L) exp(i2πm x2/L) exp(i2πl x3/L), (11)

where H denotes index set {(j,m, l) ∈ N3 : |j|, |m|, |l| ≤ H
2 }, and

i =
√
−1.

For ease of presenting our algorithm, with a slight abuse of notation,
we use ρn = M0

P

∑P
p=1 δ(x − Xp

n), and

cn =
∑

j,m,l∈H

αn;j,m,l exp(i2πj x1/L) exp(i2πm x2/L) exp(i2πl x3/L)

to represent density ρ and chemical concentration c at time tn.
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Updating chemical concentration c
Let δt = tn+1 − tn > 0 be the time step. We discretize the c equation of
(9) in time by an implicit Euler scheme:

ϵ (cn − cn−1)/δt = (∆− k2) cn + ρn. (12)

It follows that:

cn = c(x, tn) = −Kϵ,δt ∗ (ϵ cn−1/δt + ρn) = −Kϵ,δt ∗ (ϵ c(x, tn−1)/δt + ρ(x, tn))
(13)

where ∗ is spatial convolution operator, and Kϵ,δt is the Green’s
function of the operator ∆− k2 − ϵ/δt.
In case of R3, the Green’s function Kϵ,δt reads as follows

Kϵ,δt = Kϵ,δt(x) = −exp{−β|x|}
4π|x|

. β2 = k2 + ϵ/δt, (14)
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Updating chemical concentration c (cont.)

The Green’s function admits a closed-form Fourier transform,

FKϵ,δt(ω) = − 1
|ω|2 + β2 . (15)

For the term −Kϵ,δt ∗ cn−1 in (13), by Eq.(15) it is equivalent to modify
Fourier coefficients αj,m,l to
αj,m,l/(4π2j2/L2 + 4π2m2/L2 + 4π2l2/L2 + β2).
For the second term Kϵ,δt ∗ρ, we first approximate Kϵ,δt with cos series
expansion, then according to the particle representation of ρ in (10),

(Kϵ,δt ∗ ρ)j,m,l ≈
M0

P

P∑
p=1

exp(−2πjXp
n,1/L − 2πmXp

n,2/L − 2πlXp
n,l/L)(−1)j+m+l

4π2j2/L2 + 4π2m2/L2 + 4π2l2/L2 + β2 .

(16)
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Updating density of active particles ρ

In the one-step update of density ρn represented by particles
{Xp

n}p=1:P, we apply Euler-Maruyama scheme to evolve particles:

Xp
n+1 = Xp

n + χ∇xc(Xp
n , tn)δt +

√
2µδtNp

n , (17)

where Np
n ’s are i.i.d. standard normal distributions.

For n > 1, substituting (13) in (17) gives:

Xp
n+1 = Xp

n − χ∇xKϵ,δt ∗ (ϵ cn−1(x)/δt + ρn(x))|x=Xp
n
δt +

√
2µ δt Np

n ,

(18)

from which ρn+1(x) is constructed via (10).
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Updating density of active particles ρ (cont.)
For ∇xKϵ,δt ∗ cn−1(Xp

n), to avoid the singular points of ∇xKϵ,δt, we
evaluate the integral with the quadrature points that are away from 0.
Denote the standard quadrature point in Ω with
xj,m,l = (j L/H,m L/H, j L/H), where j, m, l are integers ranging from
−H/2 to H/2 − 1.
When computing the integral ∇xKϵ,δt ∗ cn−1(Xp

n), we evaluate ∇xKϵ,δt

at {Xp
n + X̄p

n − xj,m,l}j,m,l where a small spatial shift
X̄p

n = H
2L + ⌊ Xp

n
H/L⌋

H
L − Xp and c at {xj,m,l − X̄p

n}j,m,l correspondingly.
The latter one is computed by inverse Fourier transform of shifted
coefficients, with αj,m,l modified to
αj,m,l exp(−i2πjX̄p

n;1/L − i2πmX̄p
n;2/L − i2πlX̄p

n;3/L), where (X̄p
n;i) denotes

the i-th component of X̄p
n .

The term ∇xKϵ,δt ∗ ρ(Xp
n , tn) is straightforward thanks to the particle

representation of ρ(Xp
n , tn) in (10):

∇xKϵ,δt ∗ ρn(Xp
n) =

∫
Kϵ,δt(Xp

n − y)ρ(y) ≈
P∑

q=1,q ̸=p

M
P
Kϵ,δt(Xp

n − Xq
n).

(19)Zhiwen Zhang et al. Efficient Particle Methods for PDEs
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Aggregation Behaviors
The initial distribution ρ0 is assumed to be a uniform distribution over
a ball centered at (0, 0, 0) with radius 1, see Fig.3(a).
We assume the following model parameters, µ = χ = 1, ϵ = 10−4 and
k = 10−1.
The choice is made so that the model exhibits comparable behavior
as the corresponding parabolic-elliptic KS system whose blow-up
behavior is known.

(a) T = 0 (b) T = 0.1, M0 = 20 (c) T = 0.1, M0 = 80

Figure 3: Density ρ approximated by empirical distribution at T = 0.1: the
mass effect on focusing.
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An indicator of a possible blow-up
If we assume, there exists a self-similar profile of ρ at origin
ρ(x, t) ∼ 1

|x|2 , by (9), the Fourier coefficients of c has the asymptotics,

Fc(ω) ∼ 1
|ω|2 + k2 ρ̂ ∼ 1

(|ω|2 + k2)|ω|
. (20)

Then the maximum of c in the computation shall vary vs the
discretization parameter H. More precisely, we note at the origin,

c(0) ∼
∫

1
(|ω|2 + k2)|ω|

eiωxdω|x=0 =

∫
1

(|ω|2 + k2)|ω|
dω. (21)

In practical discretization, the range of integral (21) is related to the
maximum frequency, namely [−π

L (
H
2 − 1), π

L · H
2 ]

3. Then, for the type
of 1

|x|2 profile blow up, ∥c∥∞ = O(ln(H)).

Similarly for the type of δ(x) profile blow up, ∥c∥∞ = O(H).

Zhiwen Zhang et al. Efficient Particle Methods for PDEs



Motivations
Previous results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems
Interacting Particle Methods for High-Dimensional Eigenvalue Problems

DeepParticle methods for learning and generating distributions
Conclusion

Mass dependence
The critical mass M0 which plays the dominant role in the simple 2D
parabolic elliptic system.
We initialize the algorithm with uniform distribution over the unit ball
centered at the origin and c(0, x) = 0, and apply the SIPF with two
different H to compute the density and chemical concentration.
We validate the accuracy of SIPF by comparison with the result of the
radial solution obtained by FDM.
Our SIPF applies directly to more general (non-radial) KS systems.

(a) |c|∞,H=24
|c|∞,H=12

vs.
computation time T

(b) |c|∞,H=24
|c|∞,H=12

at T = 1
vs. M0.

(c) |c|∞,FDM at T = 1
vs. M0. × denotes
unstable results.

Figure 4: Ratio of |c|∞’s from 2 SIFP runs with H = 24 and H = 12 and |c|∞
from FDM run.
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Aggregation behaviors from non-radial initial data

We consider a more practical scenario where the initial distribution ρ
models several separated clusters of organisms and the mass in
each individual cluster is below the critical mass while the total mass
is super-critical.
We assume the initial distribution is a uniform distribution on four
balls with a radius 0.5 and centered at four vertices of a regular
tetrahedron, namely, (1, 0, 0), (− 1

2 ,
√

3
2 , 0), (− 1

2 ,−
√

3
2 , 0) and (0, 0,

√
2).

We assume the total mass to be M0 = 80 and so each cluster has a
mass of 20 which is below the critical mass for a ball with radius
r = 0.5.

Zhiwen Zhang et al. Efficient Particle Methods for PDEs
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Aggregation behaviors from non-radial initial data
Then we apply the algorithm to compute the KS system up to T = 0.5
with H = 24 and H = 12 while keeping the rest of the configurations.
In Fig.5(b), we compute the ratio between the maxima of c vs time
with two different spatial discretizations. We can see the singularities
formed in the system at around T = 0.3.

(a) Initial distribution. (b) |c|∞,H=24
|c|∞,H=12

vs. time.

Figure 5: Identifying the formation of a finite time singularity at t ≈ 0.3 in
non-radial solutions.
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Aggregation behaviors from non-radial initial data

(a) T = 0.1 (b) T = 0.2

(c) T = 0.3 (d) T = 0.4

Figure 6: Scatter plots of four clusters merging and a singularity formation.
Zhiwen Zhang et al. Efficient Particle Methods for PDEs



Motivations
Previous results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems
Interacting Particle Methods for High-Dimensional Eigenvalue Problems

DeepParticle methods for learning and generating distributions
Conclusion

Entropy production rate
We are interested in computing the entropy production rate to
quantify the time reversal of an SDE of the form:

dXs = −∇V(Xs)ds + b(Xs)ds +
√

2εdWs, Xs ∈ Rd, (22)

where ε > 0, V is a smooth potential function with at least quadratic
growth at infinity, b is a bounded vector field and nonconservative, b
and ∇V are orthogonal, and Ws is a standard Brownian motion.
The problem of time reversibility in diffusion processes was first
studied by Kolmogorov in 1937.
The time-reversed diffusion process to map the terminal distribution
back to the initial distribution is in general governed by a different
SDE unless b = 0.
Interestingly, the concept of time-reversed diffusion (i.e., diffusion
models) has been adopted in recent years as an effective way to
generate high-quality images in computer vision.
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Moment generating function

One can quantify time reversal through the entropy integral
St = ε−1

∫ t
0⟨b(Xs), ◦dXs⟩, which is the work done by the non-gradient

part of the Hodge decomposition of the drift force in (22).
Here ◦dXs denotes the Stratonovich integral with respect to Xs. Let
Pµ,ε

t denote the probability measure of (22) from the initial measure µ
(i.e., X0 ∼ µ).
Its moment generating function is χε

t (α) =
∫

Ct
exp(−αSε

t )dPµ,ε
t , where

α ∈ R and Ct is the space C([0, t];Rd) of continuous paths in Rd over
the time interval [0, t].
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principal eigenvalue

The representation holds: χε
t (α) =

∫
Rd g−α

(
exp(tAε,α)gα

)
dµ, where g

is a continuous function and the infinitesimal operator Aε,α acts on
smooth and compactly supported functions f as follows:

Aε,αf = ε∆f +
(
−∇V + (1 − 2α)b

)
· ∇f − α(1 − α)

ε
|b|2f +

α

ε
(b · ∇V)f − α(∇ · b)f

(23)

over α ∈ [−δ, 1 + δ] for some small δ > 0. Let λε,α denote the
principal eigenvalue of Aε,α.
Then limt→∞ t−1 logχε

t (α) = λε,α, which is convex in α and
symmetric about α = 1/2. The Legendre transform of λε,α in α is the
large deviation rate function of t−1 Sε

t .
Hence, it characterizes the stochastic growth rate of entropy.
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The operator Aε,α is unitarily equivalent to

Aε,αf := exp
(
(−2ε)−1V

)
Aε,α( exp((2ε)−1V)

)
f (24)

= ε∆f + (1 − 2α)b · ∇f − 1
4ε

|∇V|2f +
1
2ε

(b · ∇V)f

− α(1 − α)

ε
|b|2f +

1
2
(∆V)f − α(∇ · b)f .

Aε,α shares the same principal eigenvalue λε,α and shows that the
quadratic approximation near the zeros of
1
4 |∇V|2 − 1

2 b · ∇V + α(1 − α)|b|2 is crucial in studying vanishing-noise
limit as ε → 0.
There are several difficulties involved in computing the principal
eigenvalue λε,α. (1) The operators Aε,α and Aε,α are defined in
high-dimensional spaces and non-self-adjoint. (2) When studying the
vanishing-noise limit as ε → 0, the operators Aε,α and Aε,α become
singularly perturbed.
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Feymann-Kac semigroup formulation
The Feynman-Kac formula establishes a connection between PDEs
and SDEs, which inspires us to develop particle-based methods to
compute the principal eigenvalue λε,α of Aε,α.
For simplicity, we will temporarily suppress the parameters ε and α.
We decompose the operator A into A = L+ U , where
L := ε∆+ (1 − 2α)b · ∇ and
U := − 1

4ε |∇V|2 + 1
2εb · ∇V − α(1−α)

ε |b|2 + 1
2 (∆V)− α(∇ · b).

We consider the SDE with L as the associated infinitesimal
generator: dXt = (1 − 2α)bdt +

√
2εdBt, where Bt is a d-dimensional

Brownian motion.
Then, we define an evolution operator PU

t as
PU

t φ(x) = E
[
φ(Xt) exp

( ∫ t
0 U(Xs)ds

)
|X0 = x

]
, where E is the

expectation with respect to the Brownian motion and φ is a
measurable function.
Note that PU

t = exp(t(L+ U)) = exp(tA) by the Feynman-Kac
formula.
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We consider the Feynman-Kac semigroup associated with PU
t as

Θt(µ)(φ) =
µ(PU

t φ)

µ(PU
t 1)

=
E
[
φ(Xt) exp

( ∫ t
0 U(Xs)ds

)
|X0 ∼ µ

]
E
[
exp

( ∫ t
0 U(Xs)ds

)
|X0 ∼ µ

] , µ ∈ P(Rd),

(25)

where µ is an initial distribution and P(Rd) is the space of all
probability measures over Rd.
Under certain assumptions for V and b, we prove that there exists a
unique invariant measure µ⋆

U ∈ P(Rd) such that, for any µ ∈ P(Rd)
and suitable bounded function φ, we have
|Θt(µ)(φ)− µ⋆

U (φ)| ≤ Cµ exp(−κt)||φ||L∞ , where Cµ > 0 and κ > 0.
In addition, we prove that
λ = limt→∞ t−1 logE

[
exp

( ∫ t
0 U(Xs)ds

)
|X0 ∼ µ

]
.

This elegant result enables us to develop particle-based numerical
methods to compute the principal eigenvalue λ.
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Numerical dicretization

To compute the leading eigenvalue λ, we need to consider the
discretization of the operator PU

t , which consists of two steps, an
operator splitting scheme for PU

t and subsequently an
Euler-Maruyama scheme for the SDE.
With a time step size ∆t > 0, define an evolution operator P̃U

∆t as

P̃U
∆tφ(x) = exp(∆tU(x))E [φ(X∆t)|X0 = x] , (26)

where X∆t satisfies the SDE and φ is a measurable function.
Note that if we define an operator Pt as

Ptφ(x) = E [φ(Xt)|X0 = x] , for any φ measurable, (27)

then Pt = exp(tL). Hence, P̃U
∆t = exp(∆tU) exp(∆tL) can be seen as

an approximation of PU
∆t using an operator splitting scheme.

Zhiwen Zhang et al. Efficient Particle Methods for PDEs



Motivations
Previous results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems
Interacting Particle Methods for High-Dimensional Eigenvalue Problems

DeepParticle methods for learning and generating distributions
Conclusion

The corresponding Feynman-Kac semigroup

Analogously, if we define λ̂∆t =
1
∆t log(Λ̂∆t), λ̂∆t is also an

approximation of λ.
We then define the corresponding Feynman-Kac semigroup of QU

∆t as

Φk,∆t(µ)(φ) =
µ((QU

∆t)
kφ)

µ((QU
∆t)

k1)
=

E
[
φ(Xk) exp

(
∆t

∑k−1
j=0 U(Xj)

) ∣∣∣X0 ∼ µ
]

E
[
exp

(
∆t

∑k−1
j=0 U(Xj)

) ∣∣∣X0 ∼ µ
]
(28)

for any initial measure µ and any measurable function φ.
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We have the following theorem that shows the stability of Φk,∆t and
gives a representation of λ̂∆t.

Theorem 2
Under certain assumptions for V and b, there exists an invariant
measure µ̂⋆

U,∆t ∈ P(Rd) and β̂ ∈ (0, 1) such that for any initial
measure µ ∈ P(Rd), there is Cµ for which

|Φk,∆t(µ)(φ)− µ̂⋆
U,∆t(φ)| ≤ Cµβ̂

k||φ||L∞ , ∀φ ∈ L∞(Rd), ∀k ≥ 1,
(29)

where β̂ ∈ (0, 1) and Φk,∆t(µ̂
⋆
U,∆t) = µ̂⋆

U,∆t. Moreover,

λ̂∆t = lim
k→+∞

1
k∆t

logE

exp
∆t

k−1∑
j=1

U(Xj)

∣∣∣∣X0 ∼ µ

 . (30)
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Implementation of the interacting particle method

The leading eigenvalue λ can be represented as a scaled cumulant
generation function and can be approximated using a particle
approach.
However, if we compute the quantity using a direct Monte Carlo
simulation, the variance of the estimator will increase exponentially in
time, which leads to numerical instability.
Therefore, we need to supplement the computation with a multinomial
resampling technique, which acts as a variance reduction technique.
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The complete algorithm of the interacting particle
method
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A 16D result

We consider a 16D mixed single-well and double-well potential

V(x1, x2, ..., x15, x16) =

4∑
i=1

(
4x2

2i−1 + x4
2i−1

8
+

4x2
2i + x4

2i

8
)

+

4∑
i=1

(
x4

2i+7 − 2x2
2i+7 + (1 + ai(x2i+7 − 1)2)x2

2i+8 + x4
2i+8

)
,

where a1 = 0.2, a2 = 0.7, a3 = 0.5, a4 = 0.3.
The b = (b1, b2, ..., b15, b16), where b2i−1 = π−1 cos(πx2i−1) sin(πx2i)
and b2i = −π−1 sin(πx2i−1) cos(πx2i), for i = 1, ..., 8.
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A 16D result
We choose M = 500, 000,T = 2048,∆t = 2−8 in our method and
choose the initial distribution to be the standard Gaussian distribution.
We also let α ∈ [−0.1, 1.1].
We can see that the computational time grows linearly with the
number of spatial dimensions and does not change much as ε varies.
Right is the computed eigenvalues for ε = 0.1, 0.01, 0.001 and
different α’s, where a convergent empirical distribution for a larger ε
serves as the initial distributions for a smaller ε.

2 4 6 8 10 12 14 16

number of spatial dimensions
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1000

1500

2000

2500

3000

3500

4000

4500
Computational time in minutes

(a) Computational times
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(b) Computed eigenvalues

Figure 7: Numerical results for the 16D example.Zhiwen Zhang et al. Efficient Particle Methods for PDEs
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A 16D result

We note that the maximum density of the distribution is inversely
proportional to ε, which indicates the singularity of distributions as
ε → 0+.
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(c) ε = 0.001

Figure 8: At T = 2048 and with α ≈ 0.2097, the convergent empirical
distribution of particles is projected onto the x15x16-plane.
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Penalty functions: discrete Wasserstein distance

Given distributions µ and ν defined on metric spaces X and Y, we aim
to construct a transport map f 0

∗ : X → Y such that f 0
∗ (µ) = ν.

Given function f : X → Y, the p-Wasserstein distance between f∗(µ)
and ν is

Wp(f∗(µ), ν) =
(

inf
γ∈Γ(µ,ν)

∫
X×Y

dist(f (x), y)p dγ(x, y)
)1/p

, (31)

where Γ(µ, ν) denotes the collection of all measures on X × Y with
marginals µ and ν on the first and second factors respectively.
In our work, we study the case with p = 2.
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Empirical distributions and doubly stochastic matrix
In practice, the closed-form solution of µ and ν may be unknown,
instead only N independent and identically distributed (i.i.d.) samples
of µ and ν are available.
We approximate the probability measures µ and ν by empirical
distribution functions:

µ =
1
N

N∑
i=1

δxi and ν =
1
N

N∑
j=1

δyj . (32)

Any element in Γ(µ, ν) can clearly be represented by an N ×N doubly
stochastic matrix, denoted as transition matrix, γ = (γij)i,j satisfying:

γij ≥ 0; ∀j,
N∑

i=1

γij = 1; ∀i,
N∑

j=1

γij = 1. (33)

The empirical distribution functions allow us to approximate different
measures.
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Network Training Objective
The DeepParticle method does not assume the knowledge of closed
form distribution of µ and ν, instead we have i.i.d. samples of µ and ν
namely, xi and yj, i, j = 1, · · · ,N, as training data.
Then a discretization of (31) is:

Ŵ(f ) :=

 inf
γ∈ΓN

N∑
i,j=1

dist(f (xi), yj)
2γij

1/2

, (34)

where ΓN denotes all N × N doubly stochastic matrices.
Let the DNN map be fθ(x; η), where x is the input, η is the shared
physical parameter and θ denotes all the trainable parameters in the
network.
In case of X = Y = Rd equipped with Euclidean metric, the training
loss function is

Ŵ2(fθ) :=
nη∑

r=1

 inf
γr∈ΓN

N∑
i,j=1

|fθ(xi,r;κr)− yj,r|2γij,r

 . (35)
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Iterative method in finding transition matrix γ

To minimize the loss function (35), we update parameters θ of fθ with
the classical Adams stochastic gradient descent, and alternate with
updating the transition matrix γ.
The problem (35) is a linear program on the bounded convex set ΓN

of vector space of real N × N matrices. By Choquet’s theorem, this
problem admits solutions that are extremal points of ΓN .
Set of all doubly stochastic matrix ΓN can be referred to as Birkhoff
polytope. The Birkhoff–von Neumann theorem states that such
polytope is the convex hull of all permutation matrices.
So given N (typically, 2000) samples of distribution, the DOF of
minimization is N2 (4M).
Hence, it is natural to seek a localized optimization method that
decreases the loss function monotonously in each step and
converges to some permutation matrix.
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The mini-batch linear programming algorithm
We present a mini-batch linear programming algorithm to find the
best γ for each inner sum of (35).
In each iteration, we select columns and rows and solve a
sub-problem under the constraint that maintains column-wise and
row-wise sums of the corresponding sub-matrix of γ.
Let {ik}M

k=1, {jl}M
l=1 (M ≪ N) denote the index chosen from

{1, 2, · · · ,N} without replacement. The cost function of the
sub-problem is

C(γ∗) :=

M∑
k,l=1

|fθ(xik)− yjl |2γ∗
ik jl (36)

subject to 
∑M

k=1 γ
∗
ik,jl =

∑M
k=1 γik,jl ∀l = 1, · · · ,M∑M

l=1 γ
∗
ik,jl =

∑M
l=1 γik,jl ∀ k = 1, · · · ,M

γ∗
ik jl ≥ 0 ∀ k, l = 1, · · · ,M,

(37)

where γik,jl are from the previous step.
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The mini-batch linear programming algorithm (cont.)

Since optimization goal of γ and network f are Min-Min, we can solve
alternately.
The cost of finding optimal γ increases as N increases, however, the
network itself is independent of γ.
After training, our network acts as a sampler from some target
distribution ν without assumption of closed-form distribution of ν.
At this stage, the input data is no longer limited by training data, an
arbitrarily large amount of samples approximately obeying ν can be
generated through µ (uniform distribution).
The DeepParticle method can be viewed as a generative model.
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Par-Net: physical parameter-dependent network

The network takes on two
kinds of input, particle position
x and physical parameter η.
Fixing η, the network of x is a
push-forward map, which
should enjoy better regularity
(stronger regularizer during
training).

Figure 9: η is physical parameter input
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Learning and generating aggregation patterns in
Keller-Segel chemotaxis systems

Keller-Segel equation models small organisms direct their
movements towards the gradient of some chemical concentration.
A common form of KS model in 2D space:

ρt = ∇ · (µ∇ρ− χρ∇c), ϵ ct = ∆ c + ρ, (38)

where χ, µ, and ϵ are positive constants.
Physically, the chemical is faster than the organism, hence ϵ → 0.
In addition, we assume an extra advection term v that indicates the
fluid medium of the organism has its own current.
Taking χ = µ = 1, we arrive at,

ρt = ∆ ρ+∇ ·
(
ρ∇(K ∗ ρ)

)
−∇ ·

(
ρv

)
, (39)

where K = 1/(2π) log |x| is the Green’s function of Poisson equation..
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Interacting Particle Method

The density connects to McKean-Vlasov equation as N ↑ ∞,

dXj = −M
N
∇Xj

∑
i=1:J,i̸=j

K(|Xj − Xi|)dt + v(Xj)dt,+
√

2dW j

j = 1, 2, · · · ,N;

where M is the conserved total mass (integral of ρ), W j’s are
independent BM.
Numerical difficulties/instabilities:

In each step, computational cost is O(N2)
K(Xj − Xi) is singular when particles are near.

We use the DeepParticle method for learning and generating
aggregation patterns in multi-dimensional Keller-Segel chemotaxis
systems.
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A 2D problem with v = 0
In case of no convection, blow up at t = 0.125 is predicted by
second-order moment.
The training data are snapshots of empirical distribution with different
t within [0, 0.1].
It is generated by IPM with 1000 particles, and includes a
regularization term in interaction.
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3D Laminar, with different A, fixed time
Both IPM and DeepParticle generalize trivially to higher dimensions.
Laminar flow: v = A(exp(−y2 − z2), 0, 0)T

(a) A = 10

(b) A = 100

Figure 10: Generated Prediction with different A’s in 3D laminar
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(a) A = 10 (b) A = 30

(c) A = 100 (d) A = 130 (extrapolation)

Figure 11: Comparison between reference and predicted density, projected to
xy plane.
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Conclusion

We developed structure-preserving schemes to compute effective
diffusivities in chaotic and random flows.
We develop interacting particle methods (IPMs) to compute principal
eigenvalues of non-self-adjoint elliptic operators, which can compute
KPP front speeds of reaction-diffusion-advection equations and
entropy production rates in diffusion processes.
Our particle methods are mesh-free and self-adaptive.
We developed DeepParticle methods to learn and generate
distributions of solutions under variations of physical parameters.
We present numerical results to demonstrate the accuracy and
efficiency of the proposed methods.
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