Efficient Interacting Particle Methods for Computing Near Singular Solutions of Keller-Segel Chemotaxis Systems and High-Dimensional Eigenvalue Problems

**Zhiwen Zhang** 

Joint work with Drs. Zhizhang Wu, Zhongjian Wang, Junlong Lyu, and Prof. Jack Xin.

Caltech - Pasadena, California

November 2023



- Previous results
- Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems
- Interacting Particle Methods for High-Dimensional Eigenvalue Problems
- 5 DeepParticle methods for learning and generating distributions





- Many complex phenomena in science and engineering are modeled by PDEs, which are subject to specific boundary and initial conditions.
- Accurately solving these PDEs is crucial for simulating real-world phenomena, ranging from fluid flows and turbulent combustion to entropy production and population dynamics.
- Traditional mesh-based methods, such as finite element methods and spectral methods often encounter significant challenges when solving PDEs defined in high-dimensional spaces or with near singular solutions.
- In contrast, particle-based numerical methods that bypass the need for traditional mesh generation provide a promising solution to address these challenges.



< D > < P > < E > <</pre>

#### Passive tracer models and effective diffusivities

Motivations

Consider a passive tracer model,

$$dX(t) = v(t, X)dt + \sigma dw(t), \quad X \in \mathbb{R}^d,$$
(1)

where *v* is some spatial periodic field,  $\sigma > 0$  is the molecular diffusivity, and  $\{w(t)\}_{t \ge 0}$  is a standard Brownian motion (BM).

• Under certain conditions, the long-time larse-scale of X(t) behaves like a BM, i.e.,  $\frac{X(t)}{\sqrt{2t}} \rightarrow N(0, D^E)$ ,  $D^E \in \mathbb{R}^{d \times d}$  is called the effective diffusivity matrix.



#### Eulerian approach to compute $D^E$

- By homogenization theory, effective diffusion happens when *v* is mean zero and divergence-free.
- Let  $\chi$  be solution of cell problem,

$$\mathcal{L}\chi = -v(y), \quad y \in \mathbb{T}^d,$$
 (2)

where  $\mathcal{L} := (v \cdot \nabla_x + D_0 \Delta_x)$  is the generator of X,  $D_0 = \frac{\sigma^2}{2}$  is the elliptic coefficient. Then,

$$D^{E} = D_{0}I + \left\langle v \otimes \chi \right\rangle_{\mathbb{T}^{d}}$$
(3)

おり

• Numerically, if *d* is 3 or more and  $D_0$  is  $10^{-3}$  or smaller,  $\chi$  will develop sharp gradients, which brings difficulties to mesh-based numerical methods.

#### Particle methods to compute $D^E$

 We can integrate along the particle path and calculate the covariance matrix of particles directly,

$$D_{ij}^{E} = \lim_{t \to \infty} \frac{\left\langle \left( x^{i}(t) - x^{i}(0) \right) (x^{j}(t) - x^{j}(0)) \right\rangle}{2t}, \quad 1 \le i, j \le d.$$
(4)

• We developed structure-preserving schemes for long-time integration and obtained uniform-in-time error analysis.

#### Theorem 1

Let  $x_n^1$ , n = 0, 1, ... be the first component of the numerical solution and  $\Delta t$  denote the time step. We have the convergence estimate

$$\lim_{n \to \infty} \frac{E(x_n^1)^2}{2n\Delta t} = D_{11}^E + \mathcal{O}(\Delta t),$$

where the constant in  $O(\Delta t)$  may depend on the regularity of v and the constant  $\sigma$  but independent of *T*.



#### Motivations

#### Previous results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems Interacting Particle Methods for High-Dimensional Eigenvalue Problems DeepParticle methods for learning and generating distributions

#### Convection-enhanced diffusion

- In ABC (Arnold–Beltrami– Childress) flow,
  - $v = (\sin z + \cos y, \sin x + \cos z, \sin y + \cos x)$ , and in Kolmogorov flow,
  - $v = (\sin z, \sin x, \sin y).$
- The calculation of effective diffusivities is new, especially in the 3D chaotic and convection-dominated flows.



Figure 1: Effective diffusivities in 3D chaotic flows.  $\times$  is the result of conventional Euler-Maruyama method.



#### Motivations

#### Previous results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems Interacting Particle Methods for High-Dimensional Eigenvalue Problems DeepParticle methods for learning and generating distributions

## RDA equation with KPP nonlinearity

- Front propagation in complex fluid flows arises in many scientific areas such as turbulent combustion, chemical kinetics, biology, and transport in porous media.
- A fundamental problem is to analyze and compute large-scale front speeds in complex flows.
- An extensively studied model problem is the reaction diffusion advection (RDA) equation with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity.
- To be specific, the KPP equation is

$$u_t = \kappa \Delta_{\mathbf{X}} u + (\mathbf{V} \cdot \nabla_{\mathbf{X}}) u + \tau^{-1} f(u), \quad t \in \mathbb{R}^+, \quad \mathbf{X} = (x_1, ..., x_d)^T \in \mathbb{R}^d,$$
(6)

where  $\kappa$  is diffusion constant,  $\tau$  is the time scale of reaction rate, **v** is an incompressible velocity field (its precise definition will be discussed later), u is the concentration of reactant or population, and the KPP reaction term f(u) = u(1-u) satisfying  $f(u) \leq uf'(0)$ .

### Computing principal eigenvalues

• If the velocity field  $\mathbf{v} = \mathbf{v}(\mathbf{x})$  in the KPP equation (6) is time-independent, the minimal front speed in direction  $\mathbf{e}$  is given by the variational formula:  $c^*(\mathbf{e}) = \inf_{\lambda>0} \mu(\lambda)/\lambda$ , where  $\mu(\lambda)$  is the principal eigenvalue of the elliptic operator

Motivations

$$\mathcal{A}_{1}^{\lambda}\Phi \equiv \kappa\Delta_{\mathbf{x}}\Phi + (-2\kappa\lambda\mathbf{e} + \mathbf{v})\cdot\nabla_{\mathbf{x}}\Phi + (\kappa\lambda^{2} - \lambda\mathbf{v}\cdot\mathbf{e} + \tau^{-1}f'(0))\Phi = \mu(\lambda)\Phi.$$
(7)

• If  $\mathbf{v} = \mathbf{v}(t, \mathbf{x})$  in the KPP equation (6) is periodic in time *t*, then the variational formula  $c^*(\mathbf{e}) = \inf_{\lambda>0} \mu(\lambda)/\lambda$  still holds, where  $\mu(\lambda)$  is the principal eigenvalue of the time-periodic parabolic operator

$$\mathcal{A}_{2}^{\lambda}\Phi \equiv \kappa\Delta_{\mathbf{x}}\Phi + (-2\kappa\lambda\mathbf{e} + \mathbf{v})\cdot\nabla_{\mathbf{x}}\Phi + (\kappa\lambda^{2} - \lambda\mathbf{v}\cdot\mathbf{e} + \tau^{-1}f'(0))\Phi - \Phi_{t} = \mu(\lambda)\Phi,$$
(8)

• However, when the magnitude of the velocity field is large (the problem becomes advection-dominated) and/or the dimension of spatial variables is big (e.g. *d* = 3), it is extremely expensive to compute KPP front speeds by using the FEM.



#### Interacting particle methods (IPMs)

- We develop interacting particle methods to compute KPP front speeds via the Feynman–Kac formula.
- We obtained accurate principal eigenvalues by studying the convergence of the Feynman–Kac semigroup associated with the SDE system and the potential from the operator *A*.
- We also obtained error estimates of the proposed IPMs in computing principal eigenvalues.
- In the literature, the relation between KPP front speed and effective diffusivity, i.e.,  $c^*(A) = O(\sqrt{D^E(A)})$  is proved for the 2D steady cellular flow, where *A* is the strength of the flows.
- Our numerical result shows that this relation is still true for Kolmogorov flow.



• • • • • • • • • • • • • •

#### Relation of KPP front speeds and effective diffusivity

- Figure 2 shows the numerical results of  $\tilde{c}^*(\sigma)$  in the 2D steady cellular flow obtained by our method. From the numerical results, we compute regression and obtain  $\tilde{c}^*(\sigma) = O(\sigma^{0.74})$ , which agrees with the theoretical result  $c^*(A) = O(\sqrt{D^E(A)})$ , where  $A = 1/\sigma$ .
- Numerical results of  $\tilde{c}^*(\sigma)$  in 3D Kolmogorov flow. The fitted slope is  $\approx 0.43$ , which also indiates that  $c^*(A) = O(\sqrt{D^E(A)})$  is true.





#### Parabolic-Parabolic Keller-Segel Chemotaxis Systems

• We consider the parabolic-parabolic (fully parabolic) KS system of the form:

$$\rho_t = \nabla \cdot (\mu \nabla \rho - \chi \rho \nabla c),$$
  

$$\epsilon c_t = \Delta c - k^2 c + \rho,$$
(9)

where  $\chi, \mu$  ( $\epsilon, k$ ) are positive (non-negative) constants.

- The model is called elliptic if  $\epsilon = 0$  (when c evolves rapidly to a local equilibrium), and parabolic if  $\epsilon > 0$ .
- The ρ is the density of active particles (bacteria), and c is the concentration of chemo-attractant (e.g. food).
- Several numerical methods, including finite-volume methods and spectral methods have been developed for KS systems to date. However, to the best of our knowledge, these numerical methods are tailored for 2D cases.

## A stochastic interacting particle-field (SIPF) algorithm

- We propose a stochastic interacting particle-field (SIPF) algorithm for the fully parabolic KS system (9).
- Our method takes into account the coupled stochastic particle evolution (density *ρ*) and the accompanying field (concentration *c*) in the system and allows for a self-adaptive simulation of focusing and potentially singular behavior.
- In the SIPF algorithm, we represent the active particle density  $\rho$  by empirical particles and the concentration field *c* is discretized by a spectral method. This is possible since the field *c* is smoother than density  $\rho$ .
- We demonstrate the effectiveness of our method through numerical experiments in three space dimensions (3D), which have not been systematically computed and benchmarked to the best of our knowledge.





### Numerical results for 3D Euler equations

- It is worth noting that the pseudo-spectral methods were employed to compute the nearly singular solutions of the 3D Euler equations by Profs. Hou and Li.
- Subsequently, the finite-time blowup of the 3D axisymmetric Euler equations was computed using the adaptive moving mesh method by Prof. Hou's group.
- These methods represent the cutting edge in the computation of nearly singular solutions of the 3D Euler equations.
- Nevertheless, we also point out that the implementation of pseudo-spectral methods for 3D problems demands substantial computational resources, while the adaptive moving mesh method requires sophisticated design and advanced programming skills.





- Since we are interested in the spatially localized aggregation behavior, we restrict the system (9) in a large domain  $\Omega = [-L/2, L/2]^d$  and assume Dirichlet boundary condition for particle density  $\rho$  and Neumann boundary condition for chemical concentration *c*.
- As a discrete algorithm, we assume the temporal domain [0, T] is partitioned by  $\{t_n\}_{n=0:n_T}$  with  $t_0 = 0$  and  $t_{n_T} = T$ .
- We approximate the density  $\rho$  by particles, i.e.

$$\rho(t) \approx \frac{M_0}{P} \sum_{j=1}^{P} \delta(x - X_t^p), \ P \gg 1,$$

where  $M_0$  is the conserved total mass (integral of  $\rho$ ).

(10)



## Implementation of the SIPF algorithm (cont.)

• For chemical concentration c, we approximate by Fourier basis, namely,  $c(\mathbf{x}, t)$  has an series representation

$$\sum_{i,m,l\in\mathcal{H}} \alpha_{t;j,m,l} \exp(i2\pi j x_1/L) \exp(i2\pi m x_2/L) \exp(i2\pi l x_3/L),$$
(11)

where  $\mathcal{H}$  denotes index set  $\{(j, m, l) \in \mathbb{N}^3 : |j|, |m|, |l| \leq \frac{H}{2}\}$ , and  $i = \sqrt{-1}$ .

• For ease of presenting our algorithm, with a slight abuse of notation, we use  $\rho_n = \frac{M_0}{P} \sum_{p=1}^{P} \delta(x - X_n^p)$ , and

$$c_n = \sum_{j,m,l\in\mathcal{H}} \alpha_{n;j,m,l} \exp(i2\pi j x_1/L) \exp(i2\pi m x_2/L) \exp(i2\pi l x_3/L)$$

to represent density  $\rho$  and chemical concentration c at time  $t_n$ .



#### Updating chemical concentration c

• Let  $\delta t = t_{n+1} - t_n > 0$  be the time step. We discretize the *c* equation of (9) in time by an implicit Euler scheme:

$$\epsilon (c_n - c_{n-1}) / \delta t = (\Delta - k^2) c_n + \rho_n.$$
(12)

It follows that:

$$c_n = c(\mathbf{x}, t_n) = -\mathcal{K}_{\epsilon,\delta t} * (\epsilon c_{n-1}/\delta t + \rho_n) = -\mathcal{K}_{\epsilon,\delta t} * (\epsilon c(\mathbf{x}, t_{n-1})/\delta t + \rho(x, t_n))$$
(13)

where \* is spatial convolution operator, and  $\mathcal{K}_{\epsilon,\delta t}$  is the Green's function of the operator  $\Delta - k^2 - \epsilon/\delta t$ .

• In case of  $\mathbb{R}^3$ , the Green's function  $\mathcal{K}_{\epsilon,\delta t}$  reads as follows

$$\mathcal{K}_{\epsilon,\delta t} = \mathcal{K}_{\epsilon,\delta t}(\mathbf{x}) = -\frac{\exp\{-\beta|\mathbf{x}|\}}{4\pi|\mathbf{x}|}, \quad \beta^2 = k^2 + \epsilon/\delta t,$$



#### Updating chemical concentration c (cont.)

• The Green's function admits a closed-form Fourier transform,

$$\mathcal{FK}_{\epsilon,\delta t}(\omega) = -\frac{1}{|\omega|^2 + \beta^2}.$$
(15)

- For the term  $-\mathcal{K}_{\epsilon,\delta t} * c_{n-1}$  in (13), by Eq.(15) it is equivalent to modify Fourier coefficients  $\alpha_{j,m,l}$  to  $\alpha_{j,m,l}/(4\pi^2 j^2/L^2 + 4\pi^2 m^2/L^2 + 4\pi^2 l^2/L^2 + \beta^2)$ .
- For the second term *K*<sub>ε,δt</sub> \* *ρ*, we first approximate *K*<sub>ε,δt</sub> with cos series expansion, then according to the particle representation of *ρ* in (10),

$$(\mathcal{K}_{\epsilon,\delta t} * \rho)_{j,m,l} \approx \frac{M_0}{P} \sum_{p=1}^{P} \frac{\exp(-2\pi j X_{n,1}^p / L - 2\pi m X_{n,2}^p / L - 2\pi l X_{n,l}^p / L)(-1)^{j+m+l}}{4\pi^2 j^2 / L^2 + 4\pi^2 m^2 / L^2 + 4\pi^2 l^2 / L^2 + \beta^2}$$

#### Updating density of active particles $\rho$

• In the one-step update of density  $\rho_n$  represented by particles  $\{X_n^p\}_{p=1:P}$ , we apply Euler-Maruyama scheme to evolve particles:

$$X_{n+1}^p = X_n^p + \chi \nabla_x c(X_n^p, t_n) \delta t + \sqrt{2\mu \delta t} N_n^p,$$
(17)

where  $N_n^p$ 's are i.i.d. standard normal distributions.

• For n > 1, substituting (13) in (17) gives:

$$X_{n+1}^{p} = X_{n}^{p} - \chi \nabla_{x} \mathcal{K}_{\epsilon,\delta t} * (\epsilon c_{n-1}(\mathbf{x})/\delta t + \rho_{n}(\mathbf{x}))|_{x = X_{n}^{p}} \delta t + \sqrt{2 \mu \, \delta t} \, N_{n}^{p},$$
(18)

from which  $\rho_{n+1}(\mathbf{x})$  is constructed via (10).

#### Updating density of active particles $\rho$ (cont.)

- For  $\nabla_{\mathbf{x}} \mathcal{K}_{\epsilon,\delta t} * c_{n-1}(X_n^p)$ , to avoid the singular points of  $\nabla_{\mathbf{x}} \mathcal{K}_{\epsilon,\delta t}$ , we evaluate the integral with the quadrature points that are away from 0.
- Denote the standard quadrature point in  $\Omega$  with  $x_{j,m,l} = (jL/H, mL/H, jL/H)$ , where j, m, l are integers ranging from -H/2 to H/2 1.
- When computing the integral  $\nabla_{\mathbf{x}} \mathcal{K}_{\epsilon,\delta t} * c_{n-1}(X_n^p)$ , we evaluate  $\nabla_{\mathbf{x}} \mathcal{K}_{\epsilon,\delta t}$ at  $\{X_n^p + \bar{X}_n^p - x_{j,m,l}\}_{j,m,l}$  where a small spatial shift  $\bar{X}_n^p = \frac{H}{2T} + |\frac{X_n^p}{H/T}|^{\frac{H}{T}} - X^p$  and *c* at  $\{x_{i,m,l} - \bar{X}_n^p\}_{i,m,l}$  correspondingly.
- The latter one is computed by inverse Fourier transform of shifted coefficients, with  $\alpha_{j,m,l}$  modified to

 $\alpha_{j,m,l} \exp(-i2\pi j \bar{X}_{n;1}^p / L - i2\pi m \bar{X}_{n;2}^p / L - i2\pi l \bar{X}_{n;3}^p / L)$ , where  $(\bar{X}_{n;i}^p)$  denotes the *i*-th component of  $\bar{X}_n^p$ .

• The term  $\nabla_{\mathbf{x}} \mathcal{K}_{\epsilon,\delta t} * \rho(X_n^p, t_n)$  is straightforward thanks to the particle representation of  $\rho(X_n^p, t_n)$  in (10):

$$\nabla_{\mathbf{x}} \mathcal{K}_{\epsilon,\delta t} * \rho_n(X_n^p) = \int \mathcal{K}_{\epsilon,\delta t}(X_n^p - y)\rho(y) \approx \sum_{q=1}^{n} \frac{M}{P} \mathcal{K}_{\epsilon,\delta t}(X_n^p - X_n^q).$$

## Aggregation Behaviors

- The initial distribution ρ<sub>0</sub> is assumed to be a uniform distribution over a ball centered at (0,0,0) with radius 1, see Fig.3(a).
- We assume the following model parameters,  $\mu = \chi = 1$ ,  $\epsilon = 10^{-4}$  and  $k = 10^{-1}$ .
- The choice is made so that the model exhibits comparable behavior as the corresponding parabolic-elliptic KS system whose blow-up behavior is known.



(a) T = 0 (b)  $T = 0.1, M_0 = 20$  (c)  $T = 0.1, M_0 = 80$ 

Figure 3: Density  $\rho$  approximated by empirical distribution at T = 0.1: the mass effect on focusing.

#### An indicator of a possible blow-up

• If we assume, there exists a self-similar profile of  $\rho$  at origin  $\rho(x,t) \sim \frac{1}{|x|^2}$ , by (9), the Fourier coefficients of c has the asymptotics,

$$\mathcal{F}c(\omega) \sim \frac{1}{|\omega|^2 + k^2} \hat{\rho} \sim \frac{1}{(|\omega|^2 + k^2)|\omega|}.$$
 (20)

• Then the maximum of *c* in the computation shall vary vs the discretization parameter *H*. More precisely, we note at the origin,

$$c(0) \sim \int \frac{1}{(|\omega|^2 + k^2)|\omega|} e^{i\omega x} d\omega|_{x=0} = \int \frac{1}{(|\omega|^2 + k^2)|\omega|} d\omega.$$
(21)

- In practical discretization, the range of integral (21) is related to the maximum frequency, namely  $[-\frac{\pi}{L}(\frac{H}{2}-1), \frac{\pi}{L} \cdot \frac{H}{2}]^3$ . Then, for the type of  $\frac{1}{|x|^2}$  profile blow up,  $||c||_{\infty} = O(\ln(H))$ .
- Similarly for the type of  $\delta(x)$  profile blow up,  $||c||_{\infty} = O(H)$ .

#### Mass dependence

- The critical mass *M*<sub>0</sub> which plays the dominant role in the simple 2D parabolic elliptic system.
- We initialize the algorithm with uniform distribution over the unit ball centered at the origin and c(0, x) = 0, and apply the SIPF with two different *H* to compute the density and chemical concentration.
- We validate the accuracy of SIPF by comparison with the result of the radial solution obtained by FDM.
- Our SIPF applies directly to more general (non-radial) KS systems.



### Aggregation behaviors from non-radial initial data

- We consider a more practical scenario where the initial distribution ρ models several separated clusters of organisms and the mass in each individual cluster is below the critical mass while the total mass is super-critical.
- We assume the initial distribution is a uniform distribution on four balls with a radius 0.5 and centered at four vertices of a regular tetrahedron, namely, (1,0,0),  $(-\frac{1}{2},\frac{\sqrt{3}}{2},0)$ ,  $(-\frac{1}{2},-\frac{\sqrt{3}}{2},0)$  and  $(0,0,\sqrt{2})$ .
- We assume the total mass to be  $M_0 = 80$  and so each cluster has a mass of 20 which is below the critical mass for a ball with radius r = 0.5.



## Aggregation behaviors from non-radial initial data

- Then we apply the algorithm to compute the KS system up to T = 0.5 with H = 24 and H = 12 while keeping the rest of the configurations.
- In Fig.5(b), we compute the ratio between the maxima of c vs time with two different spatial discretizations. We can see the singularities formed in the system at around T = 0.3.





Figure 5: Identifying the formation of a finite time singularity at  $t \approx 0.3$  in non-radial solutions.

Motivations

Previous results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems

Interacting Particle Methods for High-Dimensional Eigenvalue Problems DeepParticle methods for learning and generating distributions

#### Aggregation behaviors from non-radial initial data



(a) T = 0.1

(b) T = 0.2





Figure 6: Scatter plots of four clusters merging and a singularity formation.

#### Entropy production rate

• We are interested in computing the entropy production rate to quantify the time reversal of an SDE of the form:

$$d\mathbf{X}_{s} = -\nabla V(\mathbf{X}_{s})ds + \mathbf{b}(\mathbf{X}_{s})ds + \sqrt{2\varepsilon}d\mathbf{W}_{s}, \quad \mathbf{X}_{s} \in \mathbb{R}^{d},$$
(22)

where  $\varepsilon > 0$ , *V* is a smooth potential function with at least quadratic growth at infinity, **b** is a bounded vector field and nonconservative, **b** and  $\nabla V$  are orthogonal, and **W**<sub>s</sub> is a standard Brownian motion.

- The problem of time reversibility in diffusion processes was first studied by Kolmogorov in 1937.
- The time-reversed diffusion process to map the terminal distribution back to the initial distribution is in general governed by a different SDE unless b = 0.
- Interestingly, the concept of time-reversed diffusion (i.e., diffusion models) has been adopted in recent years as an effective way to generate high-quality images in computer vision.





- One can quantify time reversal through the entropy integral  $S_t = \varepsilon^{-1} \int_0^t \langle \mathbf{b}(\mathbf{X}_s), \circ d\mathbf{X}_s \rangle$ , which is the work done by the non-gradient part of the Hodge decomposition of the drift force in (22).
- Here  $\circ d\mathbf{X}_s$  denotes the Stratonovich integral with respect to  $\mathbf{X}_s$ . Let  $P_t^{\mu,\varepsilon}$  denote the probability measure of (22) from the initial measure  $\mu$  (i.e.,  $\mathbf{X}_0 \sim \mu$ ).
- Its moment generating function is χ<sup>ε</sup><sub>t</sub>(α) = ∫<sub>C<sub>t</sub></sub> exp(-αS<sup>ε</sup><sub>t</sub>)dP<sup>µ,ε</sup><sub>t</sub>, where α ∈ ℝ and C<sub>t</sub> is the space C([0, t]; ℝ<sup>d</sup>) of continuous paths in ℝ<sup>d</sup> over the time interval [0, t].



#### principal eigenvalue

• The representation holds:  $\chi_t^{\varepsilon}(\alpha) = \int_{\mathbb{R}^d} g^{-\alpha} (\exp(tA^{\varepsilon,\alpha})g^{\alpha}) d\mu$ , where g is a continuous function and the infinitesimal operator  $A^{\varepsilon,\alpha}$  acts on smooth and compactly supported functions f as follows:

$$A^{\varepsilon,\alpha}f = \varepsilon\Delta f + \left(-\nabla V + (1-2\alpha)\mathbf{b}\right) \cdot \nabla f - \frac{\alpha(1-\alpha)}{\varepsilon}|\mathbf{b}|^2 f + \frac{\alpha}{\varepsilon}(\mathbf{b}\cdot\nabla V)f - \alpha(\nabla\cdot\mathbf{b})f$$
(23)

over  $\alpha \in [-\delta, 1+\delta]$  for some small  $\delta > 0$ . Let  $\lambda^{\varepsilon, \alpha}$  denote the principal eigenvalue of  $A^{\varepsilon, \alpha}$ .

- Then lim<sub>t→∞</sub> t<sup>-1</sup> log χ<sub>t</sub><sup>ε</sup>(α) = λ<sup>ε,α</sup>, which is convex in α and symmetric about α = 1/2. The Legendre transform of λ<sup>ε,α</sup> in α is the large deviation rate function of t<sup>-1</sup> S<sub>t</sub><sup>ε</sup>.
- Hence, it characterizes the stochastic growth rate of entropy.



• The operator  $A^{\varepsilon,\alpha}$  is unitarily equivalent to

$$\mathcal{A}^{\varepsilon,\alpha}f := \exp\left((-2\varepsilon)^{-1}V\right)A^{\varepsilon,\alpha}\left(\exp((2\varepsilon)^{-1}V)\right)f$$
(24)  
$$= \varepsilon\Delta f + (1-2\alpha)\mathbf{b}\cdot\nabla f - \frac{1}{4\varepsilon}|\nabla V|^2f + \frac{1}{2\varepsilon}(\mathbf{b}\cdot\nabla V)f$$
$$- \frac{\alpha(1-\alpha)}{\varepsilon}|\mathbf{b}|^2f + \frac{1}{2}(\Delta V)f - \alpha(\nabla\cdot\mathbf{b})f.$$

- $\mathcal{A}^{\varepsilon,\alpha}$  shares the same principal eigenvalue  $\lambda^{\varepsilon,\alpha}$  and shows that the quadratic approximation near the zeros of  $\frac{1}{4}|\nabla V|^2 \frac{1}{2}\mathbf{b}\cdot\nabla V + \alpha(1-\alpha)|\mathbf{b}|^2$  is crucial in studying vanishing-noise limit as  $\varepsilon \to 0$ .
- There are several difficulties involved in computing the principal eigenvalue  $\lambda^{\varepsilon,\alpha}$ . (1) The operators  $A^{\varepsilon,\alpha}$  and  $\mathcal{A}^{\varepsilon,\alpha}$  are defined in high-dimensional spaces and non-self-adjoint. (2) When studying the vanishing-noise limit as  $\varepsilon \to 0$ , the operators  $A^{\varepsilon,\alpha}$  and  $\mathcal{A}^{\varepsilon,\alpha}$  become singularly perturbed.



### Feymann-Kac semigroup formulation

- The Feynman-Kac formula establishes a connection between PDEs and SDEs, which inspires us to develop particle-based methods to compute the principal eigenvalue λ<sup>ε,α</sup> of A<sup>ε,α</sup>.
- For simplicity, we will temporarily suppress the parameters  $\varepsilon$  and  $\alpha$ . We decompose the operator  $\mathcal{A}$  into  $\mathcal{A} = \mathcal{L} + \mathcal{U}$ , where  $\mathcal{L} := \varepsilon \Delta + (1 - 2\alpha) \mathbf{b} \cdot \nabla$  and

$$\mathcal{U} := -\frac{1}{4\varepsilon} |\nabla V|^2 + \frac{1}{2\varepsilon} \mathbf{b} \cdot \nabla V - \frac{\alpha(1-\alpha)}{\varepsilon} |\mathbf{b}|^2 + \frac{1}{2} (\Delta V) - \alpha(\nabla \cdot \mathbf{b}).$$

- We consider the SDE with  $\mathcal{L}$  as the associated infinitesimal generator:  $d\mathbf{X}_t = (1 2\alpha)\mathbf{b}dt + \sqrt{2\varepsilon}d\mathbf{B}_t$ , where  $\mathbf{B}_t$  is a *d*-dimensional Brownian motion.
- Then, we define an evolution operator  $P_t^{\mathcal{U}}$  as  $P_t^{\mathcal{U}}\varphi(x) = \mathbb{E}[\varphi(\mathbf{X}_t)\exp\left(\int_0^t \mathcal{U}(\mathbf{X}_s)ds\right)|\mathbf{X}_0 = x]$ , where  $\mathbb{E}$  is the expectation with respect to the Brownian motion and  $\varphi$  is a measurable function.
- Note that  $P_t^{\mathcal{U}} = \exp(t(\mathcal{L} + \mathcal{U})) = \exp(t\mathcal{A})$  by the Feynman-Kac formula.



• We consider the Feynman-Kac semigroup associated with  $P_t^{\mathcal{U}}$  as

$$\Theta_{t}(\mu)(\varphi) = \frac{\mu(P_{t}^{\mathcal{U}}\varphi)}{\mu(P_{t}^{\mathcal{U}}\mathbb{1})} = \frac{\mathbb{E}\left[\varphi(\mathbf{X}_{t})\exp\left(\int_{0}^{t}\mathcal{U}(\mathbf{X}_{s})ds\right)|\mathbf{X}_{0}\sim\mu\right]}{\mathbb{E}\left[\exp\left(\int_{0}^{t}\mathcal{U}(\mathbf{X}_{s})ds\right)|\mathbf{X}_{0}\sim\mu\right]}, \quad \mu \in \mathcal{P}(\mathbb{R}^{d}),$$
(25)

where  $\mu$  is an initial distribution and  $\mathcal{P}(\mathbb{R}^d)$  is the space of all probability measures over  $\mathbb{R}^d$ .

- Under certain assumptions for *V* and **b**, we prove that there exists a unique invariant measure  $\mu_{\mathcal{U}}^{\star} \in \mathcal{P}(\mathbb{R}^d)$  such that, for any  $\mu \in \mathcal{P}(\mathbb{R}^d)$  and suitable bounded function  $\varphi$ , we have  $|\Theta_t(\mu)(\varphi) \mu_{\mathcal{U}}^{\star}(\varphi)| \leq C_{\mu} \exp(-\kappa t) ||\varphi||_{L^{\infty}}$ , where  $C_{\mu} > 0$  and  $\kappa > 0$ .
- In addition, we prove that  $\lambda = \lim_{t \to \infty} t^{-1} \log \mathbb{E} \left[ \exp \left( \int_0^t \mathcal{U}(\mathbf{X}_s) ds \right) | \mathbf{X}_0 \sim \mu \right].$
- This elegant result enables us to develop particle-based numerical methods to compute the principal eigenvalue λ.





### Numerical dicretization

- To compute the leading eigenvalue  $\lambda$ , we need to consider the discretization of the operator  $P_t^U$ , which consists of two steps, an operator splitting scheme for  $P_t^U$  and subsequently an Euler-Maruyama scheme for the SDE.
- With a time step size  $\Delta t > 0$ , define an evolution operator  $\widetilde{P}_{\Delta t}^{U}$  as

$$\widetilde{P}_{\Delta t}^{U}\varphi(x) = \exp(\Delta t U(x))\mathbb{E}\left[\varphi(X_{\Delta t})|X_0=x\right],$$
(26)

おり

where  $X_{\Delta t}$  satisfies the SDE and  $\varphi$  is a measurable function.

• Note that if we define an operator P<sub>t</sub> as

 $P_t \varphi(x) = \mathbb{E}\left[\varphi(X_t) | X_0 = x\right]$ , for any  $\varphi$  measurable,

then  $P_t = \exp(t\mathcal{L})$ . Hence,  $\tilde{P}_{\Delta t}^U = \exp(\Delta t U) \exp(\Delta t\mathcal{L})$  can be seen as an approximation of  $P_{\Delta t}^U$  using an operator splitting scheme.

#### The corresponding Feynman-Kac semigroup

- Analogously, if we define  $\widehat{\lambda}_{\Delta t} = \frac{1}{\Delta t} \log(\widehat{\Lambda}_{\Delta t})$ ,  $\widehat{\lambda}_{\Delta t}$  is also an approximation of  $\lambda$ .
- We then define the corresponding Feynman-Kac semigroup of  $Q^U_{\Delta t}$  as

$$\Phi_{k,\Delta t}(\mu)(\varphi) = \frac{\mu((\mathcal{Q}_{\Delta t}^{U})^{k}\varphi)}{\mu((\mathcal{Q}_{\Delta t}^{U})^{k}\mathbb{1})} = \frac{\mathbb{E}\left[\varphi(X_{k})\exp\left(\Delta t\sum_{j=0}^{k-1}U(X_{j})\right) \left|X_{0}\sim\mu\right]\right]}{\mathbb{E}\left[\exp\left(\Delta t\sum_{j=0}^{k-1}U(X_{j})\right) \left|X_{0}\sim\mu\right]\right]}$$
(28)

for any initial measure  $\mu$  and any measurable function  $\varphi$ .



• • • • • • • • • • • • • •



 We have the following theorem that shows the stability of Φ<sub>k,Δt</sub> and gives a representation of λ<sub>Δt</sub>.

#### Theorem 2

Under certain assumptions for *V* and *b*, there exists an invariant measure  $\hat{\mu}_{U,\Delta t}^{\star} \in \mathcal{P}(\mathbb{R}^d)$  and  $\hat{\beta} \in (0,1)$  such that for any initial measure  $\mu \in \mathcal{P}(\mathbb{R}^d)$ , there is  $C_{\mu}$  for which

$$|\Phi_{k,\Delta t}(\mu)(\varphi) - \widehat{\mu}_{U,\Delta t}^{\star}(\varphi)| \le C_{\mu}\widehat{\beta}^{k} ||\varphi||_{L^{\infty}}, \quad \forall \varphi \in L^{\infty}(\mathbb{R}^{d}), \quad \forall k \ge 1,$$
(29)

where  $\widehat{\beta} \in (0, 1)$  and  $\Phi_{k, \Delta t}(\widehat{\mu}_{U, \Delta t}^{\star}) = \widehat{\mu}_{U, \Delta t}^{\star}$ . Moreover,

$$\widehat{\lambda}_{\Delta t} = \lim_{k \to +\infty} \frac{1}{k\Delta t} \log \mathbb{E} \left[ \exp \left( \Delta t \sum_{j=1}^{k-1} U(X_j) \right) \left| X_0 \sim \mu \right].$$
(30)

- The leading eigenvalue λ can be represented as a scaled cumulant generation function and can be approximated using a particle approach.
- However, if we compute the quantity using a direct Monte Carlo simulation, the variance of the estimator will increase exponentially in time, which leads to numerical instability.
- Therefore, we need to supplement the computation with a multinomial resampling technique, which acts as a variance reduction technique.



Motivations

Previous results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems

Interacting Particle Methods for High-Dimensional Eigenvalue Problems

DeepParticle methods for learning and generating distributions

Conclusion

## The complete algorithm of the interacting particle method

Algorithm 1 The stochastic interacting particle method for computing the entropy

- **Input**: velocity field b, potential V, the number of particles M, initial distribution  $\mu$ , final time T, time step size  $\Delta t = \frac{T}{N}$ .
- 1: Generate M i.i.d.  $\mu$ -distributed particles  $\{\mathbf{q}^{0,m} = (q_1^{0,m}, \dots, q_d^{0,m})\}_{m=1}^M$ .
- 2: for n = 1:N do
- For m = 1,..., M, compute q̃<sup>n,m</sup> using the Euler Maruyama scheme (3.7) with q<sup>n-1,m</sup> as the initial value.
- 4: For  $m = 1, \ldots, M$ , compute the weight  $w^{n-1,m} = \exp(\Delta t U(\mathbf{q}^{n-1,m}))$  and the probability  $p^{n-1,m} = w^{n-1,m}/P^{n-1}$ , where  $P^{n-1} = \sum_{m=1}^{M} w^{n-1,m}$ .
- 5: Resample  $\{\widetilde{\mathbf{q}}^{n,m}\}_{m=1}^{M}$  according to the multinomial distribution associated with the probability  $\{p^{n-1,m}\}_{m=1}^{M}$ , which gives the particle  $\{\mathbf{q}^{n,m}\}_{m=1}^{M}$  at the *n*-th time step.
- 6: Compute the quantity  $\widehat{\lambda}^{n-1} = \log(P^{n-1}/M)$ .
- 7: end for
- 8: Compute the approximation of the leading eigenvalue  $\widehat{\lambda}_{\Delta t} = \frac{1}{T} \sum_{n=0}^{N-1} \widehat{\lambda}^n$ . Output: the approximation of the leading eigenvalue  $\widehat{\lambda}_{\Delta t}$ .



• We consider a 16D mixed single-well and double-well potential

$$V(x_1, x_2, ..., x_{15}, x_{16}) = \sum_{i=1}^{4} \left( \frac{4x_{2i-1}^2 + x_{2i-1}^4}{8} + \frac{4x_{2i}^2 + x_{2i}^4}{8} \right) + \sum_{i=1}^{4} \left( x_{2i+7}^4 - 2x_{2i+7}^2 + (1 + a_i(x_{2i+7} - 1)^2) x_{2i+8}^2 + x_{2i+8}^4 \right),$$

where  $a_1 = 0.2$ ,  $a_2 = 0.7$ ,  $a_3 = 0.5$ ,  $a_4 = 0.3$ .

• The **b** =  $(b_1, b_2, ..., b_{15}, b_{16})$ , where  $b_{2i-1} = \pi^{-1} \cos(\pi x_{2i-1}) \sin(\pi x_{2i})$ and  $b_{2i} = -\pi^{-1} \sin(\pi x_{2i-1}) \cos(\pi x_{2i})$ , for i = 1, ..., 8.





#### A 16D result

- We choose  $M = 500,000, T = 2048, \Delta t = 2^{-8}$  in our method and choose the initial distribution to be the standard Gaussian distribution.
- We also let  $\alpha \in [-0.1, 1.1]$ .
- We can see that the computational time grows linearly with the number of spatial dimensions and does not change much as  $\varepsilon$  varies.
- Right is the computed eigenvalues for  $\varepsilon = 0.1, 0.01, 0.001$  and different  $\alpha$ 's, where a convergent empirical distribution for a larger  $\varepsilon$ serves as the initial distributions for a smaller  $\varepsilon$ .







• We note that the maximum density of the distribution is inversely proportional to  $\varepsilon$ , which indicates the singularity of distributions as  $\varepsilon \to 0^+$ .



Figure 8: At T = 2048 and with  $\alpha \approx 0.2097$ , the convergent empirical distribution of particles is projected onto the  $x_{15}x_{16}$ -plane.



• • • • • • • • • • • • • •



## Penalty functions: discrete Wasserstein distance

- Given distributions μ and ν defined on metric spaces X and Y, we aim to construct a transport map f<sup>0</sup><sub>\*</sub> : X → Y such that f<sup>0</sup><sub>\*</sub>(μ) = ν.
- Given function  $f: X \to Y$ , the *p*-Wasserstein distance between  $f_*(\mu)$  and  $\nu$  is

$$W_p(f_*(\mu),\nu) = \left(\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{X \times Y} dist(f(x),y)^p \, \mathrm{d}\gamma(x,y)\right)^{1/p}, \qquad (31)$$

where  $\Gamma(\mu, \nu)$  denotes the collection of all measures on  $X \times Y$  with marginals  $\mu$  and  $\nu$  on the first and second factors respectively.

• In our work, we study the case with p = 2.



## Empirical distributions and doubly stochastic matrix

- In practice, the closed-form solution of  $\mu$  and  $\nu$  may be unknown, instead only *N* independent and identically distributed (i.i.d.) samples of  $\mu$  and  $\nu$  are available.
- We approximate the probability measures μ and ν by empirical distribution functions:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}$$
 and  $\nu = \frac{1}{N} \sum_{j=1}^{N} \delta_{y_j}$ . (32)

 Any element in Γ(μ, ν) can clearly be represented by an N × N doubly stochastic matrix, denoted as transition matrix, γ = (γ<sub>ij</sub>)<sub>i,j</sub> satisfying:

$$\gamma_{ij} \ge 0;$$
  $\forall j, \sum_{i=1}^{N} \gamma_{ij} = 1;$   $\forall i, \sum_{j=1}^{N} \gamma_{ij} = 1.$  (33)

 The empirical distribution functions allow us to approximate different measures.



#### Network Training Objective

- The DeepParticle method does not assume the knowledge of closed form distribution of  $\mu$  and  $\nu$ , instead we have i.i.d. samples of  $\mu$  and  $\nu$  namely,  $x_i$  and  $y_j$ ,  $i, j = 1, \dots, N$ , as training data.
- Then a discretization of (31) is:

$$\hat{W}(f) := \left( \inf_{\gamma \in \Gamma^N} \sum_{i,j=1}^N dist(f(x_i), y_j)^2 \gamma_{ij} \right)^{1/2},$$
(34)

where  $\Gamma^N$  denotes all  $N \times N$  doubly stochastic matrices.

- Let the DNN map be f<sub>θ</sub>(x; η), where x is the input, η is the shared physical parameter and θ denotes all the trainable parameters in the network.
- In case of  $X = Y = \mathbb{R}^d$  equipped with Euclidean metric, the training loss function is

$$\hat{W}^2(f_\theta) := \sum_{r=1}^{n_\eta} \left( \inf_{\gamma_r \in \Gamma^N} \sum_{i,j=1}^N |f_\theta(x_{i,r};\kappa_r) - y_{j,r}|^2 \gamma_{ij,r} \right)_{i=1,\dots,N} \dots$$





## Iterative method in finding transition matrix $\gamma$

- To minimize the loss function (35), we update parameters  $\theta$  of  $f_{\theta}$  with the classical Adams stochastic gradient descent, and alternate with updating the transition matrix  $\gamma$ .
- The problem (35) is a linear program on the bounded convex set Γ<sup>N</sup> of vector space of real N × N matrices. By Choquet's theorem, this problem admits solutions that are extremal points of Γ<sup>N</sup>.
- Set of all doubly stochastic matrix Γ<sup>N</sup> can be referred to as Birkhoff polytope. The Birkhoff–von Neumann theorem states that such polytope is the convex hull of all permutation matrices.
- So given N (typically, 2000) samples of distribution, the DOF of minimization is N<sup>2</sup> (4M).
- Hence, it is natural to seek a localized optimization method that decreases the loss function monotonously in each step and converges to some permutation matrix.



### The mini-batch linear programming algorithm

- We present a mini-batch linear programming algorithm to find the best γ for each inner sum of (35).
- In each iteration, we select columns and rows and solve a sub-problem under the constraint that maintains column-wise and row-wise sums of the corresponding sub-matrix of *γ*.
- Let  $\{i_k\}_{k=1}^M$ ,  $\{j_l\}_{l=1}^M$  ( $M \ll N$ ) denote the index chosen from  $\{1, 2, \cdots, N\}$  without replacement. The cost function of the sub-problem is

$$C(\gamma^*) := \sum_{k,l=1}^{M} |f_{\theta}(x_{i_k}) - y_{j_l}|^2 \gamma^*_{i_k j_l}$$
(36)

subject to

$$\begin{cases} \sum_{k=1}^{M} \gamma_{i_{k},j_{l}}^{*} = \sum_{k=1}^{M} \gamma_{i_{k},j_{l}} \quad \forall l = 1, \cdots, M\\ \sum_{l=1}^{M} \gamma_{i_{k},j_{l}}^{*} = \sum_{l=1}^{M} \gamma_{i_{k},j_{l}} \quad \forall k = 1, \cdots, M\\ \gamma_{i_{k},j_{l}}^{*} \ge 0 \quad \forall k, l = 1, \cdots, M, \end{cases}$$

where  $\gamma_{i_k,j_l}$  are from the previous step.





### The mini-batch linear programming algorithm (cont.)

- Since optimization goal of  $\gamma$  and network f are Min-Min, we can solve alternately.
- The cost of finding optimal *γ* increases as *N* increases, however, the network itself is independent of *γ*.
- After training, our network acts as a sampler from some target distribution ν without assumption of closed-form distribution of ν.
- At this stage, the input data is no longer limited by training data, an arbitrarily large amount of samples approximately obeying  $\nu$  can be generated through  $\mu$  (uniform distribution).
- The DeepParticle method can be viewed as a generative model.



< □ > < @ > < E >

#### Par-Net: physical parameter-dependent network

- The network takes on two kinds of input, particle position x and physical parameter η.
- Fixing η, the network of x is a push-forward map, which should enjoy better regularity (stronger regularizer during training).



# Learning and generating aggregation patterns in Keller-Segel chemotaxis systems

- Keller-Segel equation models small organisms direct their movements towards the gradient of some chemical concentration.
- A common form of KS model in 2D space:

$$\rho_t = \nabla \cdot (\mu \,\nabla \rho - \chi \,\rho \,\nabla c), \quad \epsilon \, c_t = \Delta \, c + \rho, \tag{38}$$

where  $\chi$ ,  $\mu$ , and  $\epsilon$  are positive constants.

- Physically, the chemical is faster than the organism, hence  $\epsilon \rightarrow 0$ .
- In addition, we assume an extra advection term **v** that indicates the fluid medium of the organism has its own current.
- Taking  $\chi = \mu = 1$ , we arrive at,

$$\rho_t = \Delta \rho + \nabla \cdot \left( \rho \nabla (\mathcal{K} * \rho) \right) - \nabla \cdot \left( \rho \mathbf{V} \right),$$

where  $\mathcal{K} = 1/(2\pi) \log |x|$  is the Green's function of Poisson equation.



• The density connects to McKean-Vlasov equation as  $N \uparrow \infty$ ,

$$dX^{j} = -\frac{M}{N} \nabla_{X^{j}} \sum_{i=1:J, i \neq j} \mathcal{K}(|X^{j} - X^{i}|) dt + \mathbf{v}(X^{j}) dt, +\sqrt{2} dW^{j}$$
$$j = 1, 2, \cdots, N;$$

where *M* is the conserved total mass (integral of  $\rho$ ), *W*<sup>*j*</sup>'s are independent BM.

- Numerical difficulties/instabilities:
  - In each step, computational cost is  $\mathcal{O}(N^2)$
  - $\mathcal{K}(X^{j} X^{i})$  is singular when particles are near.
- We use the DeepParticle method for learning and generating aggregation patterns in multi-dimensional Keller-Segel chemotaxis systems.





- In case of no convection, blow up at t = 0.125
  - In case of no convection, blow up at t = 0.125 is predicted by second-order moment.
- The training data are snapshots of empirical distribution with different *t* within [0, 0.1].
- It is generated by IPM with 1000 particles, and includes a regularization term in interaction.



おり

#### 3D Laminar, with different A, fixed time

- Both IPM and DeepParticle generalize trivially to higher dimensions.
- Laminar flow:  $\mathbf{v} = A(\exp(-y^2 z^2), 0, 0)^T$



(a) A = 10





(b) A = 100

Zhiwen Zhang et al.

Efficient Particle Methods for PDEs

#### Motivations

revious results

Interacting Particle Methods for Computing Keller-Segel Chemotaxis System Interacting Particle Methods for High-Dimensional Eigenvalue Problems

DeepParticle methods for learning and generating distributions

Conclusion



(a) A = 10

(b) A = 30



Figure 11: Comparison between reference and predicted density, projected *xy* plane.



- We developed structure-preserving schemes to compute effective diffusivities in chaotic and random flows.
- We develop interacting particle methods (IPMs) to compute principal eigenvalues of non-self-adjoint elliptic operators, which can compute KPP front speeds of reaction-diffusion-advection equations and entropy production rates in diffusion processes.
- Our particle methods are mesh-free and self-adaptive.
- We developed DeepParticle methods to learn and generate distributions of solutions under variations of physical parameters.
- We present numerical results to demonstrate the accuracy and efficiency of the proposed methods.



• • • • • • • • • • • • • •



- I would like to take this opportunity to express my deepest gratitude for your exceptional guidance and mentorship.
- Your unwavering support and invaluable assistance throughout my academic journey have been truly remarkable. I very much appreciate it.
- I want to extend my heartfelt wishes for your good health and continued success in all your future endeavors.



| Motivations                                                                |  |
|----------------------------------------------------------------------------|--|
| Previous results                                                           |  |
| Interacting Particle Methods for Computing Keller-Segel Chemotaxis Systems |  |
| Interacting Particle Methods for High-Dimensional Eigenvalue Problems      |  |
| DeepParticle methods for learning and generating distributions             |  |
| Conclusion                                                                 |  |
|                                                                            |  |

## Thank the support from RGC and NSFC! Thank you very much for your attention!

