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My Postdoctoral Stay at Caltech: 1993–1997
Applied Math (AMath) Faculty:

§ Don Cohen

§ Joel Franklin

§ Herb Keller (primary mentor)

§ Dan Meiron

§ Phil Saffman

§ Gerald Whitham

§ Tom Hou (1993–)

§ Oscar Bruno (1995–)

AMath Research Scientist/Postdoc:

§ Eric Van de Velde (CRPC Fac)

§ Stephan Vandewalle (ofc mate)

§ + von Karman instructors

Other Caltech Faculty:
§ Kip Thorne (physics)

§ Eanna Flanagan
§ Eric Poisson
§ Scott Hughes, ...

§ Bill Goddard (chemistry)

§ Jerry Marsden (CDS; 1992–)

§ Peter Schroeder (CS; 1995–)

§ + many others

AMath visitors:

§ Edris Titi

§ + many others

AMath students I remember:

§ Many who are here today...

Herb’s three commands to me the day I arrived at Caltech:

§ ”Lose the Tie”

§ ”Take Kip Thorne’s GR Class (Phys 236) and teach me GR”

§ ”Start biking if you want to write joint papers with me”
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General Relativity

Einstein’s 1915 general theory of relativity states what we experience
as gravity is simply the curvature of our spacetime when it is viewed
as a geometrical object M, known as a pseudo-Riemannian manifold.

Newtonian vs. General Relativistic Theories of Gravity:

Curvature in our spacetime M is governed by the Einstein Equations.

Einstein Equations also predict that acceler-
ating masses produce gravitational waves,
perturbations in the metric tensor of M.

(Image borrowed from LIGO website.)
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Einstein Equations

The Einstein equations are a system of differential equations describing
how spacetime curves in response to matter and energy.

Geometric piece of the equations can be understood by examining how
derivatives in calculus must be modified when space (or spacetime) is
curved:

Flat: V a
,bc ´ V a

,cb “ 0, V a
,b “

BV a

Bxb
.

Curved: V a
;bc ´ V a

;cb “ Ra
dbcV

d , V a
;b “ V a

,b ` Γa
bcV

c .

Let us note what form Ra
dbc takes, and give names to some objects:

§ Ra
dbc “ Γa

bd,c ´ Γa
cd,b ` Γa

ecΓ
e
bd ´ Γa

ebΓ
e
cd ; Riemann tensor

§ Rab “ R c
acb , R “ R a

a ; Ricci tensor, scalar curv.
§ Gab “ Rab ´ 1

2
Rgab; Einstein tensor

§ Tab; Stress-energy tensor

The Einstein equations relate the mathematical object (Gab) describing
curvature of spacetime M to the mathematical object (Tab)
representing matter and energy content of our spacetime:

Gab “ κTab, 0 ď a ď b ď 3, κ “ 8πG{c4. (10 equations)
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Reformulation as an Initial-Value Problem
Space and time are all mixed up in Einstein’s Equation: Gab “ κTab.

Hope for reformulation as well-posed initial-value problem; “future”
would then be determined by solution of a time-dependent differential
equation for the “metric” of space at any future time.

This program was completed by Yvonne Choquet-Bruhat and other
mathematicians by the 1950’s; the famous book of Hawking & Ellis in
1973 summarizes this theory. (Summarized in MTW, Wald, etc.)

Result: 12-component evolution system for pĥab, k̂abq on foliation Sptq:

Bt ĥab “ eqn for 3-metric ĥ , Bt k̂ab “ eqn for extrinsic curvature k̂
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Einstein Constraints and Conformal Method

Constrained by 4 coupled eqns on a spacelike hypersurface M “ Sptq,
with τ̂ “ k̂abĥ

ab,

3R̂ ` τ̂ 2
´ k̂ab k̂

ab
´ 2κρ̂ “ 0, ∇̂aτ̂ ´ ∇̂b k̂

ab
´ κĵa “ 0.

Lichnerowicz-York conformal decomposition: split initial data into 8
freely specifiable pieces plus 4 determined via: ĥab “ ϕ4hab,
τ̂ “ k̂abĥ

ab
“ τ , and

k̂ab “ ϕ´10
rσab

` pLwq
ab

s `
1

4
ϕ´4τhab, ĵa “ ϕ´10ja, ρ̂ “ ϕ´8ρ.

Produces coupled elliptic system for conformal factor ϕ and a w a:

´8∆ϕ ` Rϕ `
2

3
τ 2ϕ5

´ pσab ` pLwqabq
2ϕ´7

´ 2κρϕ´3
“ 0,

´∇apLwq
ab

`
2

3
ϕ6∇bτ ` κjb “ 0.

Differential structure on M defined through background 3-metric hab:

pLwq
ab

“ ∇awb
`∇bw a

´
2

3
p∇cw

c
qhab, ∇bV

a
“ V a

;b “ V a
,b`Γa

bcV
c ,

V a
,b “

BV a

Bxb
, Γa

bc “
1

2
had

ˆ

Bhdb
Bxc

`
Bhdc
Bxb

´
Bhbc
Bxd

˙

. pΓa
bc “ Γa

cbq
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The Conformal Method as an Elliptic System
Let M be a space-like Riemannian 3-manifold with (possibly empty)
boundary submanifold BM, split into disjoint submanifolds satisfying:

BDM Y BNM “ BM, BDM X BNM “ H. pBDM X BNM “ Hq

Metric hab associated with M induces boundary metric σab, giving
boundary value formulation of conformal method for ϕ and w a:

Lϕ ` F pϕ,wq “ 0, in M, (Hamiltonian)

Lw ` Fpϕq “ 0, in M, (Momentum)

pLwq
abνb ` C a

bw
b

“ V a
ϕ on BNM, and w a

“ w a
D on BDM,

p∇aϕqνa ` kw pϕq “ g on BNM, and ϕ “ ϕD on BDM,

where:

Lϕ “ ´∆ϕ, pLwq
a

“ ´∇bpLwq
ab,

F pϕ,wq “ aRϕ ` aτϕ
5

´ awϕ
´7

´ aρϕ
´3, Fpϕq “ bb

τϕ
6

` bb
j ,

with:

aR “ R
8
, aτ “ τ2

12
, aw “ 1

8
rσab ` pLwqabs

2, aρ “
κρ
4
, bb

τ “ 2
3
∇bτ , bb

j “ κjb,

pLwq
ab

“ ∇awb
`∇bw a

´ 2
3
p∇cw

c
qhab, ∇bV

a
“ V a

;b “ V a
,b `Γa

bcV
c ,

V a
,b “

BV a

Bxb
, Γa

bc “
1

2
had

ˆ

Bhdb
Bxc

`
Bhdc
Bxb

´
Bhbc
Bxd

˙

. pΓa
bc “ Γa

cbq
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The Reality of finding something I could work on in GR...

§ Understanding enough GR to work on math questions: daunting.

§ It became clear this was going to be a much longer term project.

§ Herb had a gut feeling that the nonlinear structure in GR would
need analytic and numerical bifurcation analysis.
(He turned out to be right, but not possible until well after 2008.)

§ Simultaneously I pursued other things with Caltech visitors; e.g.:

§ M. H. and S. Vandewalle, Schwarz methods: To symmetrize or not to
symmetrize, SIAM J. Numer. Anal., 34 (1997), pp. 699–722.

§ M. H. and E. Titi, Determining projections and functionals for weak

solutions of the Navier-Stokes equations, in Recent Developments in

Optimization Theory and Nonlinear Analysis, Y. Censor and S. Reich, eds.,

vol. 204 of Contemporary Mathematics, Providence, RI, 1997, American

Mathematical Society, pp. 125–138.

§ Meanwhile, Kip Thorne generously invited me to sit in his weekly
research group meetings (1995-1997).

§ AMath Courses I taught: 204A (Fall 1995), 105A (Winter 1996),
105B (Spring 1996), 104 (Fall 1996), 220C (Spring 1997).

§ My one-off paper with E. Titi above led to my first job as an
assistant professor at UC Irvine (1997-1998).
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Away from Caltech: 1998–2002

UC Irvine Period: 1997-1998

§ Recruited by UC Irvine Math to help build Applied Math Group.

§ Worked with E. Titi on recruiting others for coming year.

§ Stayed in contact with Caltech AMath & Thorne Group.

§ Extended my Caltech AMA 204a notes for grad course at UCI.

§ Found my first two graduate students (later moved to UCSD).

§ Recruited hard by UCSD Math in Spring 1998.

§ Final Act before moving to UCSD in Summer 1998: helped recruit
Hongkai Zhao (Szego at Stanford), who then really started a
buildup in UCI applied math.

§ Remained in contact with E. Titi; sent him my UCSD
undergraduate honors student (Evelyn Lunasin) as his PhD
student, and she later rejoined me at UCSD as a postdoc to work
on determining degrees of freedom in Navier-Stokes models:

§ M. Holst, E. Lunasin, and G. Tsogtgerel, Analysis of a general family

of regularized Navier-Stokes and MHD models, J. Nonlin. Sci., 20 (2010),

pp. 523–567.
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Away from Caltech: 1998–2002
UC San Diego Period: 1998-2002

§ Summer 1998: Arrived at UCSD (Spouse Mai in LA until 1999).

§ June 1998: Frantically wrote first NSF Proposal (CAREER).
§ Proposal centered around Einstein Constraint equations:

approximation theory and adaptive algorithms.

§ Some papers produced in this direction:
§ R. Bank and M. Holst, A new paradigm for parallel adaptive mesh

refinement, SIAM Rev., 45 (2003), pp. 291–323.

§ M. Holst, Applications of domain decomposition and partition of unity
methods in physics and geometry (plenary paper), Domain Decomposition
Methods in Science and Engineering, Mexico City, Mexico, June 2003,
UNAM, pp. 63–78.

§ M. Holst, Adaptive numerical treatment of elliptic systems on manifolds,

Adv. Comput. Math., 15 (2001), pp. 139–191.

§ AiCM Paper above: Derived a priori and a posteriori FE error
estimates for Einstein constraints, based on solvability and
regularity assumptions.

§ Robert Bartnik: generously read article and made helpful
comments; outlined large gaps in existing PDE theory for
constraints.

§ Spring 2002: Kip Thorne drove down to UCSD to invite me to help
organize a 2-year visitor program at Caltech to start in Fall 2002.
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LIGO: Laser Interferometer Gravitational-wave Observatory

LIGO is one of several recently constructed gravitational detectors.

Design of LIGO based on measuring distance changes between objects in
orthogonal directions as metric tensor ripple propagates through device.

Two L-shaped LIGO detectors (Washington & Louisiana), 1.5m ˆ 4km,
have phenomenal sensitivity, on order 10´15m to 10´18m.

Fact: LIGO turns on in 2005; hinges on simulation & analysis pipeline.

Problem: LIGO funding initiated in 1992; by 2002 no real progress on
codes that could simulate even a single orbit of a pure binary system.

Kip’s Plan: Bring together best math & physics people to sort it out.
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My Second Stay at Caltech: 2003–2005
§ I was one of 12 organizers of the Visitor program (11 physicists).
§ I was at Caltech during much of the next three academic years:

§ 2002-2003: Program first year; lived in Pasadena with Herb Keller.
§ 2003-2004: Based back at UCSD (1st child Maven born May 2003).
§ 2004-2005: Lived in Hawking house on Catalina (w/ Mai & Maven).

(2nd child Makenna born October 2005.)

ACM (name change!) Faculty:

§ Oscar Bruno

§ Tom Hou

§ Herb Keller

§ Dan Meiron

§ Niles Pierce (1999–)

§ Emmanuel Candes (2000–)

§ Houman Owhadi (2003–)

Other Caltech Faculty:

§ Kip Thorne (physics)
§ Jerry Marsden (CDS)

§ Melvin Leok (PhD 2004)
§ Ari Stern (PhD 2009)

§ + others

Caltech Physics people:

§ Lee Lindblom, Mark Sheel

§ Harold Pfeiffer, Franz Pretorius

§ + others

Math Physics visitors:
§ Oscar Reula

§ Gabriel Nagy
§ Manuel Tiglio

§ Olivier Sarbach, + others

Math visitors:

§ Doug Arnold, Robert Bartnik

§ Jim Isenberg, Vince Moncrief

§ Niall O’Murchadha, S.T. Yau

§ + others
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Visitor Program: Great Success
§ Each quarter of the program focused on different issues:

§ Weakly, strongly, and symmetric hyperbolic formulations of GR.
§ Understanding the properties of the constraint equations.
§ Understanding interior and exterior boundary conditions.
§ Coordinates, constraint control, + many other obstacles.

§ By 2005: First working code presented at BANFF/BIRS by Franz
Pretorious – tens of orbits of binary black hole system, inspiral and
merger, ring-down, and gravitational wave extraction! This was
accomplished by combining various advanced techniques from
applied and computational math community, such as:

§ Well-posed hyperbolic formulation (had been much confusion)
§ Local AMR (driven by a posteriori indicators)
§ Inner boundary condition models (black hole isometry models)
§ Exterior boundary condition models (radiation conditions)
§ Constraint control; one of our contributions in this direction:

§ M. Holst, L. Lindblom, R. Owen, H. Pfeiffer, M. Scheel, and
L. Kidder, Optimal constraint projection for hyperbolic evolution
systems, Phys. Rev. D, 70 (2004), pp. 84017(1)–84017(17).

§ Within a year, multiple groups had produced similar working codes
using different core techniques such as spectral methods.

§ LIGO came online in 2005; codes were ready just in time. For next
decade (2005-2015), simulation pipeline was continually refined.

§ Math community contributed greatly to the success of the GR
simulation part of the LIGO pipeline, and this is not widely known.
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LIGO Detection in Fall 2015

In February 2016, NSF announced an upcoming conference press for
Feb 11 with the humble title “Scientists to Provide Update on the
Search for Gravitational Waves”. It would not take place in some dusty
lab, but rather at the National Press Club in Washington, DC.

When the press conference began, the LIGO Laboratory director David
Reitze simply announced: “Ladies and gentlemen. We have detected
gravitational waves. We did it.”

On 14 September 2015, both LIGO devices nearly simultaneously
detected a clear, loud, and violent inspiral, collision, merger, and
ringdown of a binary black hole pair, each of which had a solar mass in
range 10-50, with roughly equivalent of three solar masses in energy
released as gravitational radiation. Radiation traveled outward from at
speed of light, reaching LIGO detectors roughly 1.3 billion years later.

The detection was only possibly through the use of modern data
analysis techniques combined with computer simulations of wave
emission from this type of binary collision, produced through very
detailed numerical simulations of the full Einstein equations.
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LIGO First Detection in 2015 and Nobel Prize in 2017

We documented the involvement of the mathematics community behind
the scenes of LIGO, including the Caltech Visitor Program, in a 2016
AMS Bulletin Article that appeared just after the first gravitational
wave detection by LIGO was announced by NSF.

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 53, Number 4, October 2016, Pages 513–554
http://dx.doi.org/10.1090/bull/1544

Article electronically published on August 2, 2016

THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE:

100 YEARS OF DEVELOPMENT

OF MATHEMATICAL THEORY, DETECTORS,

NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS

MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI

In memory of Sergio Dain

Abstract. On September 14, 2015, the newly upgraded Laser Interferometer
Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave
(GW) signal, emitted a billion light-years away by a coalescing binary of two
stellar-mass black holes. The detection was announced in February 2016, in
time for the hundredth anniversary of Einstein’s prediction of GWs within the
theory of general relativity (GR). The signal represents the first direct detec-
tion of GWs, the first observation of a black-hole binary, and the first test
of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of

its first observing run, LIGO observed two more signals from black-hole bina-
ries, one moderately loud, another at the boundary of statistical significance.
The detections mark the end of a decades-long quest and the beginning of
GW astronomy: finally, we are able to probe the unseen, electromagnetically
dark Universe by listening to it. In this article, we present a short historical
overview of GW science: this young discipline combines GR, arguably the
crowning achievement of classical physics, with record-setting, ultra-low-noise
laser interferometry, and with some of the most powerful developments in the
theory of differential geometry, partial differential equations, high-performance
computation, numerical analysis, signal processing, statistical inference, and
data science. Our emphasis is on the synergy between these disciplines and
how mathematics, broadly understood, has historically played, and continues
to play, a crucial role in the development of GW science. We focus on black
holes, which are very pure mathematical solutions of Einstein’s gravitational-
field equations that are nevertheless realized in Nature and that provided the
first observed signals.

Contents

1. Gravitational waves from black holes: a historical milestone 514
2. Space and time 515
3. Gravitational waves 517
4. Early searches for ripples in space-time 520
5. From the curvature of space-time to partial differential equations 521
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5.3. The constraint equations 524
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Returning to UCSD in 2005, the recent interactions at Caltech led to:

§ My numerical analysis research evolving toward two new topics.

§ New research direction on analysis of the Einstein constraints.

A conversation with Emmanuel Candes (circa 2004) in part led me to
an interest in convergence theory for adaptive algorithms; e.g.

§ L. Chen, MH, and J. Xu, The finite element approximation of the nonlinear
Poisson-Boltzmann Equation, SIAM J. Numer. Anal., 45 (2007), pp. 2298–2320.

§ L. Chen, MH, and J. Xu, Convergence and optimality of adaptive mixed finite
element methods, Math. Comp., 78 (2009), pp. 35–53.

§ MH, S. Pollock, and Y. Zhu, Convergence of goal-oriented adaptive finite
element methods for semilinear problems, Computing and Visualization in Science,
17 (2015), pp. 43–63.

§ MH and S. Pollock, Convergence of goal-oriented adaptive finite element
methods for nonsymmetric problems, Numerical Methods for Partial Differential
Equations, 32 (2016), pp. 479–509.

§ MH, Y. Li, A. Mihalik, and R. Szypowski, Convergence and optimality of
adaptive mixed methods for Poisson’s equation in the FEEC framework, J. Comput.
Math., 38 (2020), pp. 748–767.
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Conversations with Doug Arnold and Jerry Marsden at Caltech during
2003-2005 led to a new interest in mixed formulations and finite element
exterior calculus (FEEC), with applications to geometric PDE; e.g.,

§ MH and A. Stern, Geometric variational crimes: Hilbert complexes, finite
element exterior calculus, and problems on hypersurfaces, Found. Comput. Math.,
12 (2012), pp. 263–293.

§ MH and A. Stern, Semilinear mixed problems on Hilbert complexes and their
numerical approximation, Found. Comput. Math., 12 (2012), pp. 363–387.

§ A. Gillette, MH, and Y. Zhu, Finite element exterior calculus for evolution
problems, Journal of Computational Mathematics, 35 (2017), pp. 186–212.

§ MH and C. Tiee, Finite element exterior calculus for parabolic evolution problems
on Riemannian hypersurfaces, Journal of Computational Mathematics, 36 (2018),
pp. 792–832.

§ MH, Y. Li, A. Mihalik, and R. Szypowski, Convergence and optimality of
adaptive mixed methods for Poisson’s equation in the FEEC framework, J. Comput.
Math., 38 (2020), pp. 748–767.
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Einstein Constraint Equations: CMC Case (1944–1995)

Conversations with Jim Isenberg, Vince Moncrief, Robert Bartnik and
S.T. Yau over 2003-2005 led me to focus on developing a more
complete solution theory for Einstein constraint equations.

Fundamentally there are three cases: CMC, Near-CMC, and Non-CMC

Case 1: Constant Mean Curvature (CMC):

∇bτ “ 0 ñ constraints de-couple.

CMC results during 1944–1995 via exploiting decoupling; reduces to
solvability of the Hamiltonian constraint; e.g.

§ A. Lichnerowicz, L’integration des équations de la gravitation relativiste et le
problème des n corps. J. Math. Pures Appl., 23:37–63, 1944.

§ Y. Choquet-Bruhat Théorème d’existence pour certains systèmes d’équations
aux dérivées partielles non linéaires. Acta Math., 88:141–225, 1952.

§ N. Ó. Murchadha and J. York, Initial-value problem of general relativity I.
General formulation and physical interpretation. Phys. Rev. D, 10(2):428–436,
1974.

§ J. Isenberg, Constant mean curvature solution of the Einstein constraint
equations on closed manifold. Class. Quantum Grav. 12 (1995), 2249–2274.
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Einstein Constraint Equations: Near-CMC Case (1996–2007)

Case 2: Near-CMC:

∇bτ ‰ 0 but ∇bτ « 0 ñ constraints weakly coupled.

In 1996, Isenberg-Moncrief show first near-CMC existence result:
§ J. Isenberg and V. Moncrief, A set of nonconstant mean curvature solution of

the Einstein constraint equations on closed manifolds, Class. Quantum Grav. 13
(1996), 1819–1847.

§ J. Isenberg and J. Park, Asymptotically hyperbolic non-constant mean
curvature solutions of the Einstein constraint equations. Class. Quantum Grav.,
14:A189–A201, 1997.

§ Y. Choquet-Bruhat, J. Isenberg, and J. York, Einstein constraint on
asymptotically Euclidean manifolds. Phys. Rev. D, 61:084034, 2000.

Case 3: Non-CMC:

∇bτ ‰ 0 ñ constraints coupled arbitrarily strongly.

In 2004 Bartnik and Isenberg state: “Almost nothing known.”

§ R. Bartnik and J. Isenberg, The Constraint Equations, In: Chruściel, P.T.,
Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of
Gravitational Fields. Birkhäuser, Basel.
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Einstein Constraint Equations: Non-CMC Case (2008–Present)

Case 3: Non-CMC:

∇bτ ‰ 0 ñ constraints coupled arbitrarily strongly.

Working on this case over the 2005-2008 period, we established the first
existence results for the general non-CMC case in:

§ MH, G. Nagy, and G. Tsogtgerel, Far-from-constant mean curvature solutions
of Einstein’s constraint equations with positive Yamabe metrics, Phys. Rev. Lett.,
100 (2008), pp. 161101.1–161101.4.

§ MH, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein constraints
on closed manifolds without near-CMC conditions, Comm. Math. Phys., 288
(2009), pp. 547–613.

More recent existence results with direct relevance to LIGO:
§ MH and G. Tsogtgerel, The Lichnerowicz equation on compact manifolds with

boundary, Class. Quantum Grav., 30 (2013), pp. 1–31.

§ MH and C. Meier, Non-CMC solutions of the Einstein constraint equations on
asymptotically Euclidean manifolds with apparent horizon boundaries, Class.
Quantum Grav., 32 (2014), pp. 1–25.

§ MH, C. Meier, and G. Tsogtgerel, Non-CMC solutions of the Einstein
constraint equations on compact manifolds with apparent horizon boundaries,
Comm. Math. Phys., 357 (2018), pp. 467–517.
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Einstein Constraint Equations: Folds and Bifurcations
Herb Keller’s intuition back in 1993 was right: The nonlinear structure
of the Einstein constraints allows for solutions that exhibit fold and
bifurcation phenomena.

First discovered by LIGO numerical relativists (circa 2004); reported
their nonlinear iterative solvers could find either of two distinct solutions
in non-CMC case, depending on choice of initial condition for iteration.

Some work was done by Niall O’Murchadha, Harald Pfeiffer, and some
of their collaborators to show this numerically in a predictable way.

Our group and several others began to use analytic and/or numerical
bifurcation tools to understand the solution behavior in 2011; e.g.,

§ MH and V. Kungurtsev, Numerical bifurcation analysis of conformal
formulations of the Einstein constraints, Phys. Rev. D, 84 (2011),
pp. 124038(1)–124038(8).

§ MH and C. Meier, Non-Uniqueness of Solutions to the Conformal Formulation,
Available as arXiv:1210.2156 [gr-qc]

§ J. Dilts, MH, T. Kozareva, and D. Maxwell, Numerical Bifurcation Analysis
of the Conformal Method, Available as arXiv:1710.03201 [gr-qc]

and has led to the development of an alternative to the conformal
method known as the “Drift System”; a first analysis appears here:

§ MH, D. Maxwell, and R. Mazzeo, Conformal fields and the structure of the
space of solutions of the Einstein constraint equations, Adv. Theor. Math. Phys.,
26 (2022), pp. 1157–1201.
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